
Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 1124–1128
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

UniMelb at SemEval-2018 Task 12: Generative Implication using LSTMs,
Siamese Networks and Semantic Representations with Synonym Fuzzing

Anirudh Joshi1,2 Timothy Baldwin1 Richard O. Sinnott1
Cecile Paris2

1 The University of Melbourne 2 CSIRO Data61
anirudhj@student.unimelb.edu.au, tb@ldwin.net

rsinnott@unimelb.edu.au, cecile.paris@data61.csiro.au

Abstract

This paper describes a warrant classification
system for SemEval 2018 Task 12, that at-
tempts to learn semantic representations of
reasons, claims and warrants. The system
consists of 3 stacked LSTMs: one for the
reason, one for the claim, and one shared
Siamese Network for the 2 candidate warrants.
Our main contribution is to force the embed-
dings into a shared feature space using vec-
tor operations, semantic similarity classifica-
tion, Siamese networks, and multi-task learn-
ing. In doing so, we learn a form of genera-
tive implication, in encoding implication inter-
relationships between reasons, claims, and the
associated correct and incorrect warrants. We
augment the limited data in the task further by
utilizing WordNet synonym “fuzzing”. When
applied to SemEval 2018 Task 12, our system
performs well on the development data, and
officially ranked 8th among 21 teams.

1 Introduction

This paper describes our system for the Argument
Reasoning Comprehension Task of SemEval 2018
(Habernal et al., 2018). The main goal of our sys-
tem is to learn semantic representations of reasons,
claims and warrants upon which vector operations
can be applied which encode their interrelation-
ships, whilst sharing encodings.

We train our system over the 1274 candidate
reason, claim, first and second warrant examples
from the edited Room for Debate New York Times
dataset provided by the task organizers (Haber-
nal et al., 2018), which we augment to generate
a dataset that is used with a multi-task based ob-
jective function to learn semantically meaningful
representations.

Our system combines these vectors to make a
determination, via vector operations and semantic

similarity classification, to determine which of the
two warrants best fits the reason and claim repre-
sentations, and best encodes the relationships be-
tween them. We replicate this for each sentence
type, and mirror it for each warrant. In doing so
we were able to achieve strong results on the de-
velopment set, and ranked 8th overall in the com-
petition.

2 Approach

2.1 Model Overview

As detailed in Figure 1, our system is made up
of 3 stacked LSTMs, with one being essentially
a Siamese network shared between the two war-
rants, and the other two encoding the reason and
the claim. We take an average pool over the top-
layer hidden representations and use them as the
semantic feature vectors for each respective sen-
tence. We take these semantic vectors and ap-
ply vector operations to them to generate embed-
dings for each reason, claim and warrant, which
we found in practice to perform well. We then do
semantic comparisons between the generated and
actual encodings, marking as the same those be-
tween generated and actual encodings that include
the correct warrant (i.e. correct interrelationships)
and not the same for those that do not (through a
logistic unit). We also do a joint loss on both war-
rant’s logistic output with a softmax to the ground
truth (same/not same), and use that as our tracking
metric during training.

We tokenize each sentence using Keras (Chol-
let, 2018) and utilize an embedding layer based on
the GloVe 300-dimensional, 840 billion token, un-
cased word embeddings (Pennington et al., 2014).
We then push these through three stacked LSTM
networks (Hochreiter and Schmidhuber, 1997) —
one each for the reasons, claims and warrants —

1124



Figure 1: An overview of our model.

to generate the pooled semantic feature vectors of
each phrase. Each stacked LSTM network is com-
prised of three layers, of 128, 64 and 32 nodes,
respectively. We do this to force compression and
to avoid overfitting on the dataset.

We take the final 32-dimensional embedding of
each reason, claim and warrant, and apply aver-
age pooling over time to create robust compressed
representations of each.

We take these representations and then perform
various vector operations (addition/subtraction)
between them. We use these operations as a form
of implication to generate a warrant using the rea-
son and claim representations. The generation op-
eration does not necessarily require vector additiv-
ity (e.g. operations need not be constrained across
tasks). For example the operation to learn the gen-
erative representation from a reason and a claim to
a warrant can be a simple addition/subtraction, or
an affine transformation, or in future scenarios it
can be even more complicated dense networks.

For example given a reason and a claim, we
wish to combine them together with an operation
that creates a generative representation of a war-
rant (simple vector operations for example), and

accordingly generate a representation using the
operation r⃗t − c⃗t = w⃗g (where the t subscript en-
tails the true representation, and the g the gener-
ated one). We then set up our loss function such
that we compare the absolute semantic difference
between the true generative encoding (generated
with the correct two representations) with that of
a query encoding and compare them to determine
whether or not they are the are the same (i.e. the
correct or incorrect warrant vs. the true generative
representation).

We additionally embed both the correct and in-
correct warrant for each example, and use these
representations to drive multi-task learning us-
ing a Siamese network (as each reason, claim
and warrant are compared to their true genera-
tive representations with only correct triplet com-
binations being classified as being the same). We
use Siamese networks as they have been shown
to work well in settings where semantic text doc-
ument comparisons are involved (Mueller and
Thyagarajan, 2016).

Our objective function is intended to minimize
the difference between generative and actual war-
rant representations, and maximize the difference
between generative and incorrect warrant repre-

1125



sentations. We do this via analogy to both Deep-
Face’s semantic similarity classification (Taigman
et al., 2014) and FaceNet’s anchor representations
(Schroff et al., 2015): for the similarity classifica-
tion we use a logistic regression atop the absolute
difference between the generative and the actual
representations for the multiple tasks (same/not
same), and we combine a joint softmax discrim-
inative function that selects between the candidate
warrants on that output, w1∥w2c⋀, as our tracking
objective (for early stopping and checkpointing).
In doing so we aim to push the generative and true
representations closer together, and push the gen-
erative and incorrect representations further apart.
In this process we should then be able to perform
Generative Implication, where the semantic repre-
sentations across implication tasks can be shared,
but where differing operations between the repre-
sentations can be used to generate each other.

Due to the small data size (~1k), we explored
a variety of approaches to augment the training
data. One approach is to use multiple implication
tasks to generate representations. Our tasks use
the two warrants and reason + conclusion to gen-
erate representations of each other. We tried mul-
tiple operations including affine transforms and
dense networks, as well as vector additivity con-
straints across tasks (i.e. the projection operations
from the shared embeddings must reconcile, cf.
Mikolov et al. (2013)). However we found that
they led to overfitting, and hence sought to split the
implication projection from the shared representa-
tions into unconstrained operations (two of which
are vector additive, r⃗g and c⃗g, with w⃗g being split
off, with the split likely acting as a regularizer):

r⃗g = c⃗t − w⃗t

w⃗g = r⃗t − c⃗t
c⃗g = r⃗t + w⃗t

From this, we have a multi-task output with the
generative representation of correct/incorrect war-
rants being compared to their semantic representa-
tions, correct with the true warrant, and incorrect
with the wrong warrant.

We also augmented the data by taking random
combinations of single synonym fuzzed Word-
Net (Miller, 1995) sentences using their sampled
closest synonyms (using the NLTK toolkit (Bird
et al., 2009) and pywsd (Tan, 2014)). Through this

method we generated a much larger dataset (~20×,
depending on how many synonyms we could sam-
ple per sentence). We also swapped the warrants
to double the size of the dataset. In doing so we
ended up with ~234K examples. We did this to
ensure a large enough dataset that included numer-
ous subtleties.

2.2 Training

2.2.1 Optimization and Regularisation

We used heavy dropout (Srivastava et al., 2014),
as we found overfitting to be an endemic prob-
lem, requiring heavy regularization. Along with
the layers being smaller as we go up the stack,
we applied progressively reduced dropout rates,
from 0.8 at the 128 layer, to 0.6 (64) and 0.4
(32). We found this led to better generalization
on the development set. We use Adam as our op-
timizer (Kingma and Ba, 2014), and checkpoint-
ing (with an accuracy max of the joint softmax
with w1∥w2c⋀) and early stopping (Caruana et al.,
2001). We trained our models using 3–10 epochs,
depending on when they began to overfit.

3 Results

We ranked 8th in the competition (among 21
teams) with a test accuracy of 0.577. Amongst
the teams there was a clear outlier in the GIST
system (which we note used transfer learning),
with the remaining systems incrementally falling
from ~0.6 downwards, with the random baseline at
0.527, and the example test system at 0.56 (Haber-
nal et al., 2018).

In terms of the different systems we trained, our
top three would have ranked 4th in the competi-
tion, two of which used more aggressive dropout,
and one of which used a combination of features
identified above (including attention between the
other two sentences). The development to test set
gap was wide, indicating generalization was ex-
tremely hard (similarly with others in the com-
petition). In terms of performance, we found
early on that constrained (i.e. vector additive op-
erations) led to lower development performance,
which continued on to the test set. With the re-
maining systems we used the operations as de-
fined previously (unconstrained). In general we
found that regularization dominates performance
measures, above and beyond operations.

1126



System Development Test

Higher Starting Dropout (0.9) 0.658 0.597
Lower Dropout Reduction Between LSTM Layers (0.1) 0.658 0.592
Combination 0.668 0.592
Equal Dropout on each LSTM Layer (0.5) 0.646 0.583
Extra Layer (4 Layer, 256 Base Latent LSTM) 0.652 0.579
Test System 0.671 0.577
Attention (with Double Batch Size for speed) 0.639 0.574
Test System (Constrained) 0.665 0.568
Large Batch Size (1024 minibatch) 0.617 0.538
Noise Semantic Output Layers (Gaussian) 0.627 0.527

Table 1: Accuracy over the development and test sets for various system configuration and our official submission
(“Test System”), sorted by test set accuracy. “Combination” = attention, equal dropout, 4-Layer, noise semantic
layer (with double batch size for speed)

4 Discussion

A few things helped performance (specifically
generalization): (1) average pooling, most likely
by making the overall meaning of the sentence
more stable; (2) WordNet fuzzing and the resul-
tant data augmentation; (3) progressively reduced
dropout; (4) adding layers somewhat improved
performance; (5) using progressively smaller
LSTM layers; (6) using uncased, larger token size
GloVe vectors, likely due to the larger coverage
and more specific embeddings; and (7) multi-task
learning.

We did not find that using dense networks for
generative semantic operations worked well, as
overfitting was endemic. We tried to enforce con-
strained vector additivity between tasks, but found
that this harmed performance, and instead we took
the path of multiple unconstrained tasks projected
from the shared embeddings. In future, these op-
erations should be fully-fledged generative func-
tions, to account for the inherent complexity of the
task itself. Adding noise to the embeddings (e.g.
Gaussian) as a form of data augmentation also did
not aid performance. Larger batches in general
did speed up training, but in general harmed over-
all performance. We experimented with L1/L2
regularization, but found dropout to be far more
robust. We attempted shared LSTM layers (be-
tween reason, claim, warrants), but again, found it
be to detrimental. We tried BiLSTMs (which did
not improve performance), and GRUs (which took
longer to train with comparable performance). We
also tried attention (e.g. a warrant on its respec-
tive reason and claim), but this too did not improve
performance.

4.1 Future Directions

There are numerous future directions from this
work, mostly in the integration of transfer learn-
ing, more complicated generation functions, and
low resource learning. As we found overfitting
to be an endemic problem across approaches, we
believe that aggressive use of transfer learning of
higher-level concepts from parallel domains will
likely be of use. The operations for the differ-
ent tasks were originally trained to be vector ad-
ditive, but we found in practice that they harmed
performance. Instead, complex embedding gener-
ation will almost certainly require more complex
operations than the simple ones we found to work
well in this work. This opens up new directions in
terms of classification and text generation within
argument mining, such as the generation of im-
plicit warrants between reasons and claims, or the
detection of reasoning triplets for dataset genera-
tion. We also believe aggressive use of low re-
source (e.g. few-shot) learning mechanisms will
be beneficial in the future.

5 Conclusion

In this paper we demonstrated a system that at-
tempts to learn a form of generative implication
from sets of reasons, claims and warrants. There
was a large generalization gap between the devel-
opment and test test results for both of the tested
systems, as well as the competition as a whole,
which highlights how large an issue overfitting is
for problems based on small datasets. We demon-
strated our tested models’ performance on both the
development and test sets, with our final submis-
sion coming in 8th (among 21).

1127



Acknowledgments

This research is based upon work supported in part
by CSIRO Data61 and the Office of the Director
of National Intelligence (ODNI), Intelligence Ad-
vanced Research projects Activity (IARPA), un-
der Contract [2017-16122000002]. The views and
conclusions contained herein are those of the au-
thors and should not be interpreted as necessarily
representing the official policies, either expressed
or implied, of ODNI, IARPA, or the U.S. Gov-
ernment. The U.S. Government is authorized to
reproduce and distribute reprints for governmen-
tal purposes notwithstanding any copyright anno-
tation therein.

References

Steven Bird, Ewan Klein, and Edward Loper. 2009.
Natural Language Processing with Python: An-
alyzing Text with the Natural Language Toolkit.
“O’Reilly Media, Inc.”.

Rich Caruana, Steve Lawrence, and C Lee Giles. 2001.
Overfitting in neural nets: Backpropagation, conju-
gate gradient, and early stopping. In T K Leen, T G
Dietterich, and V Tresp, editors, Advances in Neural
Information Processing Systems 13, pages 402–408.
MIT Press.

François et al Chollet. 2018. keras [software].
https://github.com/keras-team/
keras. Accessed: 2018-2-17.

Ivan Habernal, Henning Wachsmuth, Iryna Gurevych,
and Benno Stein. 2018. The argument reasoning
comprehension task: Identification and reconstruc-
tion of implicit warrants. In Proceedings of the 16th
Annual Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics: Human Language Technologies, page to ap-
pear, New Orleans, USA. Association for Compu-
tational Linguistics.

S Hochreiter and J Schmidhuber. 1997. Long short-
term memory. Neural Comput., 9(8):1735–1780.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization.

Tomas Mikolov, Wen-Tau Yih, and Geoffrey Zweig.
2013. Linguistic regularities in continuous space
word representations. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 746–751.

George A Miller. 1995. WordNet: a lexical database
for english. Commun. ACM, 38(11):39–41.

Jonas Mueller and Aditya Thyagarajan. 2016. Siamese
recurrent architectures for learning sentence similar-
ity. In AAAI, pages 2786–2792. aaai.org.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543. aclweb.org.

Florian Schroff, Dmitry Kalenichenko, and James
Philbin. 2015. Facenet: A unified embedding for
face recognition and clustering. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 815–823.

Nitish Srivastava, Geo Rey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Yaniv Taigman, Ming Yang, Marc’aurelio Ranzato, and
Lior Wolf. 2014. Deepface: Closing the gap to
human-level performance in face verification. In
Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pages 1701–1708. cv-
foundation.org.

Liling Tan. 2014. Pywsd: Python implementa-
tions of word sense disambiguation (WSD) tech-
nologies [software]. https://github.com/
alvations/pywsd.

1128


