MITRE at SemEval-2018 Task 11: Commonsense Reasoning without
Commonsense Knowledge

Elizabeth M. Merkhofer, John Henderson, David Bloom,
Laura Strickhart and Guido Zarrella
The MITRE Corporation
202 Burlington Road
Bedford, MA 01730-1420, USA
{emerkhofer, jhndrsn, dtbloom, 1strickhart, j zarrella}@mit re.org

Abstract

This paper describes MITRE'’s participation in
SemEval-2018 Task 11: Machine Comprehen-
sion using Commonsense Knowledge. The
techniques explored range from simple bag-
of-ngrams classifiers to neural architectures
with varied attention and alignment mecha-
nisms. Logistic regression ties the systems to-
gether into an ensemble submitted for evalu-
ation. The resulting system answers reading
comprehension questions with 82.27% accu-
racy.

1 Introduction

Reading comprehension tasks measure the ability
to answer questions that require inference from a
free text story. This SemEval task, like many stan-
dardized tests (e.g., the SAT), provides multiple-
choice answers. Reading comprehension may rely
on information explicitly contained in the text,
such as which actors are present, as well as el-
ements of world knowledge, like understanding
common Scripts.

Early attempts at statistical reading comprehen-
sion include fill-in-the-blank questions and com-
bine rich question categorization, information re-
trieval techniques, and entity recognition with
type-specific, hand-crafted tactics (Hirschman
et al., 1999; Anand et al., 2000).

More recent neural work uses continuous, dis-
tributed semantic space rather than n-gram overlap
to find answers similar to the story. Trischler et al.
(2016) compute a version of word overlap by find-
ing cosine similarity of word representations be-
tween sections. Yin et al. (2016) restate the ques-
tion and answer and incorporate a question-type
classifier.

In this effort we explored neural distributed rep-
resentations and lexicon-based machine learning
approaches, especially attention and word overlap.

2 Task, Data and Evaluation

Machine Comprehension using Commonsense
Knowledge was a shared task organized within
SemEval-2018 (Ostermann et al., 2018b).

The task organizers released a dataset of 1,689
stories and 10,872 questions (up to 14 questions
per story), split into training and development sets.
The stories were first-person, English language
narratives written by Mechanical Turk workers in
response to prompts asking them to describe a sce-
nario, like going on a date. Stories were up to 860
words long, with 90% under 273 words and a me-
dian length of 183 words. Questions are up to 22
words long, with a median length of seven. Each
question has two possible answers. Answers vary
in length from a single word, including yes or no,
to 30 words, with a median length of three. Many
questions are repeated between multiple stories. A
sample story and questions are shown in Figure 1.
Dataset construction is detailed in Ostermann et al.
(2018a). The evaluation metric for the task is sim-
ple accuracy: the portion of correct answers.

Question types Table 1 quantifies the question
types in the development set. We created this tax-
onomy to better understand the dataset. It also al-
lowed us to direct our development toward model
weaknesses.

Common Sense Knowledge and Inference
Types Reading comprehension relies on infer-
ence. We explored an inference taxonomy out-
lined in Chikalanga (1992) to better characterize
the types of questions and answers involved in this
shared task. For a subset of the training dataset,
we manually classified whether questions required
a reader to make lexical, propositional, or prag-
matic inferences about the story. We found that
many questions could be answered with more than
one type of inference and some questions required
multiple inferences. We considered which infer-

1078

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 1078—1082
New Orleans, Louisiana, June 5-6, 2018. ©2018 Association for Computational Linguistics

I went to the airport to go see my friend in North Car-
olina. So I drove up and had to go to the gate to go
park. I paid my money to go park and went to park.
From there I walked up into the airport to figure out
where I need to check in. After much confusion, I
found the place to check in and walked up. I gave them
my boarding pass and they took my bags. From there
they weighed them to make sure that they were not over
the weight limit for carry on items. After that I went
to security. I arrived super early so that I would have
plenty of time in the line. I got in line for security and
just waited. After getting to the front of the line, I took
off my shoes and belt and put those on an x-ray scanner
and got scanned myself. I put them back on and went
to my flight.

Did they check in any baggage?

v'yes

X no

Where were they flying to?

v'North Carolina

X South Carolina

Why did they arrive to the airport early?

X They were not early, they were late.

v'To have enough time to wait in line

Why do they have to check in?

v'To board their flight

X They had to check in because they were going over-
seas.

Figure 1: Sample story with questions.

ences could require knowledge and data sources
external to the story, like temporal-spatial relation-
ships or physical properties such as temperature.
Our analysis determined that this was unnecessary
for task completion.

3 System Overview

We created an ensemble of three systems, each of
which independently predicted the correct answer.
Two of the systems use a neural attention architec-
ture, and the third is a logistic regression.

3.1 Neural Attention

A recurrent neural system uses attention to cre-
ate a representation for each answer that consid-
ers the question and story. Our ensemble includes
two versions of this model with word embeddings
trained on different corpora.

The words of each section (story, question, and
answer) are embedded using a frozen projection
layer, a fully-connected layer, and a recurrent
layer. Another Long Short-Term Memory (LSTM)
layer operates over the words in each story sen-
tence to represent the story as a sequence of sen-
tence embeddings. Each embedded answer se-
quence attends the words of the question using a
parameterized attention mechanism (described be-
low). This output attends the story sentences using

description

22.8 yes/mo questions — One answer began with the
string yes and the other answer began with the
string no

9.4 yes/no only questions — answers were entirely the
word yes or no

13.0 who questions

12.8 what questions

8.9 where questions

5.4 when questions
17.6 how questions
12.1 why questions

0.4 which questions

23.7 all correct answer words are in the story

30.7 none of the correct answer words are in the story

13.7 all incorrect answer words are in the story

37.6 none of the incorrect answer words are in the story

15.6 none of the correct or incorrect answer words are
in the story

Table 1: Question types in the development set.

a similar attention mechanism, and an LSTM re-
duces the sequence. A fully-connected layer pro-
duces a prediction for each answer output, and a
softmax converts these to probabilities over the
two answers. All hidden layers are of size 128,
50% dropout follows on the embedding and RNN
layers, and the adam optimizer is used for training.

Components of this neural system include: pre-
trained distributed word representations, word
overlap/hard attention features, and an attention
mechanism.

For one model, NN-T, we used word2vec
(Mikolov et al., 2013) to learn distributed rep-
resentations of words from the text of English
tweets collected from 2011 to 2016. We applied
word2phrase twice to identify phrases of up
to four words, and trained a skip-gram model of
size 256, using a context window of 10 words and
15 negative samples per example. Twitter embed-
dings were chosen because at least some of the
corpus matches the informal, first-person register
of the task dataset. Our other set of word vectors,
used in NN-GN, was released by Google along-
side the tool and is made up of 300-vectors trained
on a billion words of Google News (GoogleCode,
2013 (accessed March 3, 2018). For both vector
sets, we used only the 100,000 most frequent vo-
cabulary items, since the shared data vocabulary
was quite limited.

Word-overlap features were concatenated to the
pretrained word embeddings. These consist of
four channels that compare the present section
(question or answer) with the story and question.
The first two channels are binary overlap: whether

1079

[olw] w description]
I 199 12814 [SNA]
2 1.18 -0.5591 answer length (words)
3 049 0.0394 answer length (chars)
4 015 -01728 |QNA]
5 0.11 -0.0005 story length (chars)
6 0.09 0.0026 story length (words)
7 0.04 0.0041 question length (chars)
8 003 -0.0219 |SNQ|
9 0.02 00114 question length (words)

Table 2: Length and count features in the logistic re-
gression model, ranked by influence (o|w|).

the word in this position appears in the compared
section. The cosine similarity channels contain
the similarity of the present word with the clos-
est word in the other section, computed using the
same set of pretrained word vectors used by the
neural model.

Our model adapts the attention mechanism de-
scribed in Vaswani et al. (2017). The scaled dot
product attention mechanism takes a memory and
a query representation, e.g., the embedded words
of the question and answer, respectively. Linear
transformations are used to create a key and value
from the former, and a query from the latter. Com-
patibility is computed as the scaled dot product of
the key and query. This determines the weights
over each timestep in the value, for each timestep
of the query. Our model did not improve using
parallel multi-head memory mechanisms nor by
including fully-connected layers on top of them.

3.2 Logistic Regression

A logistic regression (LR) system was developed
as a baseline against which the neural approach
would be compared. This system was competitive
enough to be included in the final ensemble.

The vocabulary of the LR system was limited
to the training set. The Porter stemmer (Porter,
1980) was used to strip the non-information bear-
ing suffixes from all of the words. Standard stop-
word lists removed words like yes and no that
were important to the questions and answers, so
the stopword list was reduced to just {a,an,the}.
Various lengths were included as features. Tak-
ing S, @, and A as the sets of words in the story,
question, and answer respectively, the following
three counts were added to the feature set: |S N A,
|Q N Al and |S N Q|. Table 2 shows the full list of
length and word count features.

The rest of the features were lexicalized pat-
terns. Table 3 shows examples. Features include

[olw] w story question answer |

1 0.61 1.85 ye

2 050 -1.89 it it

3 0.45 -2.22 they they

4 0.35 1.00 they

5 0.34 -1.64 wa wa

6 0.33 -1.42 in in

7 028 -225 at at

8 027 -1.97 friend

9 0.26 1.98 narrat
10 024 -1.66 for for
11 022 -1.60 of of
12 0.22 2.03 friend friend
13 0.21 -1.39 on on
14 0.20 -1.90 with with
15 0.20 0.82 did no
16 0.19 -0.57 no
17 0.19 -1.78 were were
18 0.19 -1.88 them them
19 0.18 1.84 author
20 0.17 1.86 who author
21 0.16 -1.75 one one
22 0.16 -1.85 had had
23 0.15 -1.09 hour
24 0.14 -1.82 neighbor
25 0.14 1.12 who narrat
26 0.13 2.10 long not
27 0.13 -1.73 out out
28 0.13 1.20 home
29 0.13 1.50 mani one
30 0.13 -1.22 minut minut
31 0.13 -1.49 after after
32 0.13 0.57 did it
33 0.12 1.80 morn morn
34 0.12 1.76 who they
35 0.12 0.74 they their
36 0.12 2.00 speaker

Table 3: Stemmed word factors in the logistic regres-
sion model ranked by influence (o|w|).

the set of words in the answer (A), the words
common to the story and the answer (S N A) and
the Cartesian product of the question and answer
(Q x A).

A bias term was added and Liblinear (Fan
et al., 2008) was used to compute the model. L2
regularization was used to encourage generaliza-
tion. The best value for the regularization param-
eter was the default, 1. The target variable for the
LR model to predict was the distinction between
a correct answer and an incorrect answer. At de-
code time, the answer with the higher probability
of being correct was chosen. This simple logistic
regression model performed surprisingly well, less
than 1% off from our best neural model.

Tables 2 and 3 show each feature’s influence on
fitting the training set. The rank ordering is stan-
dard deviation times the magnitude of the feature
weight, o|w|. This figure of merit balances fea-
tures with high weights that were rare and features
with low weights that were common.

3.3 Ensemble

An L2-regularized logistic regression weights the
predictions of the above systems. MITRE’s offi-

1080

cial submission is an ensemble of the subsystems’
binary class predictions. We submitted this system
because it is simpler than an ensemble of continu-
ous predictions and found it had the same accuracy
on the development data, though more than 50 test
set predictions were different.

4 Additional Experiments

We applied several approaches to the problem that
did not generalize as well to the development data
and were not included in the final ensemble.

Baselines We trained two baseline classifiers
with incomplete information to gauge the diffi-
culty of the task and to measure the relative im-
portance of the story, question, and answers sep-
arately. Each baseline was a recurrent neural net-
work with a layer of pretrained word embeddings
and a stack of two 128-dimensional GRU layers.
The QA-only baseline received as input only a con-
catenation of a question and its candidate answers,
separated by special tokens. The A-only baseline
received only a concatenation of the two candi-
date answers. A-only scored at 71.9% accuracy
on the dev set, while QA-only was slightly higher
at 73.2% accuracy. Other attempts to augment
these models with attention over a lengthy story
sequence frequently failed to eclipse the QA-only
baseline, leading us to investigate hierarchical at-
tention models and explicit overlap features.

Negative sampling We explored negative sam-
pling to augment the training data, to improve our
models’ ability to exclude wrong answers. We se-
lected the 10 nearest neighbors for each question
and supplemented the original positive and neg-
ative answer with the other questions’ answers.
These were deduplicated after minimal prepro-
cessing (normalizing case and punctuation), in-
creasing the number of answers per question to
between four and 20. Our nearest neighbors cal-
culation is based on the average of word vectors
for the in-vocabulary words in the questions.
Negative sampling did not improve accuracy.
We tested conditions where 1) the original neg-
ative answer was sampled with equal probability
or 2) always kept, and considered different val-
ues of N, where N is the total number of answers
the model considered. We found no accuracy gain
from using negative sampling beyond normal vari-
ance when the original negative was always in-
cluded. When N was small, not necessarily in-

Factored Ablated
Component dev test dev test
NN-T 81.93 80.23 81.72 79.76
NN-GN 81.01 80.12 83.06 79.51
LR 81.36 79.66 81.64 79.87
All In 85.12 82.27

Table 4: Factored and ablated system components eval-
uated on our dev set and the official test set.

cluding the original negative seems to hurt accu-
racy, suggesting that the randomly drawn nega-
tives were not as plausible as the original nega-
tives. For larger values of N, both conditions hurt
performance.

We experimented with condition 1 and the LR
model. The best value of N was 5 for this model,
but accuracy was still below the model trained
with the original dataset.

5 Experiment Details

The systems included in our model were trained
only on the data released for this task, aside from
word vector pretraining. The dev set was used to
select hyperparameters for individual components
and final ensemble.

6 Results

The columns of Table 4 show the accuracy of each
system in isolation on the dev and test data (Fac-
tored”) and the performance of the ensemble when
the individual system was removed (”Ablated”).
The final line shows the overall accuracy of the
submission.

7 Conclusion

An ensemble of models was used to answer
multiple-choice reading comprehension questions
about informal, first person narratives. The result-
ing official system ranked second in the shared
task. Our system relies heavily on lexical and
overlap features, without an explicit reasoning
component or external sources of world knowl-
edge. Word embeddings trained on larger corpora
contribute a semantic space that supports some in-
ference beyond simple word overlap.

Acknowledgments

Approved for Public Release; Distribution Unlim-
ited. Case Number 18-1298.

1081

References

Pranav Anand, Eric Breck, Brianne Brown, Marc
Light, Gideon Mann, Ellen Riloff, Mats Rooth, and
Michael Thelen. 2000. Fun with reading compre-
hension. In Final report, Reading Comprehension
group, Johns Hopkins Center for Language and
Speech Processing Summer Workshop.

Israel Chikalanga. 1992. A suggested taxonomy of in-
ferences for the reading teacher. Reading in a For-
eign Language.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-
Rui Wang, and Chih-Jen Lin. 2008. LIBLINEAR:
A library for large linear classification. Journal of
Machine Learning Research, 9:1871-1874.

GoogleCode. 2013 (accessed March 3, 2018).
Word2vec. https://code.google.com/
archive/p/word2vec/.

Lynette Hirschman, Marc Light, Eric Breck, and
John D. Burger. 1999. Deep read: a reading com-
prehension system. In Proceedings of the 37th An-
nual Meeting of the Association for Computational
Linguistics on Computational Linguistics, ACL °99,
pages 325-332, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in Neural Information Processing
Systems.

Simon Ostermann, Ashutosh Modi, Michael Roth, Ste-
fan Thater, and Manfred Pinkal. 2018a. MCScript:
A Novel Dataset for Assessing Machine Compre-
hension Using Script Knowledge. In Proceedings
of the 11th International Conference on Language
Resources and Evaluation (LREC 2018), Miyazaki,
Japan.

Simon Ostermann, Michael Roth, Ashutosh Modi, Ste-
fan Thater, and Manfred Pinkal. 2018b. SemEval-
2018 Task 11: Machine Comprehension using Com-
monsense Knowledge. In Proceedings of Interna-
tional Workshop on Semantic Evaluation (SemEval-
2018), New Orleans, LA, USA.

Martin F Porter. 1980. An algorithm for suffix strip-
ping. Program, 14(3):130-137.

Adam Trischler, Zheng Ye, Xingdi Yuan, Jing He,
Phillip Bachman, and Kaheer Suleman. 2016.
A parallel-hierarchical model for machine com-

prehension on sparse data. arXiv preprint
arXiv:1603.08884.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 6000-6010.

Wenpeng Yin, Sebastian Ebert, and Hinrich Schiitze.
2016. Attention-based convolutional neural net-
work for machine comprehension. arXiv preprint
arXiv:1602.04341.

1082

