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Abstract

This paper reports our submission to task
11 (Machine Comprehension using Common-
sense Knowledge) in SemEval 2018. We
firstly use GloVe to learn the distributed rep-
resentations automatically from the instance,
question and answer triples. Then an attention-
based Bidirectional LSTM (BiLSTM) model
is used to encode the triples. We also perform
a simple ensemble method to improve the ef-
fectiveness of our model. The system we de-
veloped obtains an encouraging result on this
task. It achieves the accuracy 0.7472 on the
test set. We rank 5th according to the official
ranking.

1 Introduction

Machine comprehension of text is one of the ulti-
mate goals of natural language processing. The
machine comprehension problem can be formu-
lated as follows: Given an instance i, a question
q and an answer candidate pool {a1, a2, . . ., as},
the aim is to search for the best answer candidate
ak, where 1 ≤ k ≤ s. The major challenge of this
task is that the words in the answer do not neces-
sarily appear in the instance.

In recent years, deep learning models are widely
used in the field of NLP, such as semantic analysis
(Tang et al., 2015), machine translation (Bahdanau
et al., 2014) and text summarization (Rush et al.,
2015). (Bahdanau et al., 2014) also introduced the
attention mechanism into NLP task for the first
time. This attention-based model yielded state-
of-the-art performance on the machine translation
task. (Hermann et al., 2015) built a supervised
reading comprehension data set, the CNN/Daily
Mail data sets1. They also presented Attentive
Reader for machine comprehension, which allows
a model to focus on the aspects of an instance that

1http://www.github.com/deepmind/rc-data/

can help to answer a question, and also allows us
to visualize its inference process (Hermann et al.,
2015). The key point of the attention-based mod-
els is the design of attention function. Com-
pared to Attentive Reader, Attention Sum Reader
(Kadlec et al., 2016) used the dot products instead
of a tanh layer to compute the attention between
question and contextual embeddings. Stanford At-
tention Reader (Chen et al., 2016) took a bilinear
term as the attention function and obtained state-
of-the-art results on the CNN/Daily Mail data sets.

The reasoning process was implemented in
some models for machine comprehension. Mem-
ory Networks (Sukhbaatar et al., 2015) was the
first model to propose reasoning process, which
had important influence on other follow-up mod-
els. Compared to the traditional attention model,
Memory Networks additionally uses a function t
that constantly updates the representation of the
instance and the question so as to realize the rea-
soning process. (Tseng et al., 2016) proposed
an attention-based multi-hop recurrent neural net-
work which achieved good performance on the
machine listening comprehension test of TOEFL.
Other reasoning models (Dhingra et al., 2017; Sor-
doni et al., 2016) shared the same idea as pre-
vious models, i.e., the representations of the in-
stance and the question embedding were updated
through continuous conversion of attention. Some
more complex models (Hu et al., 2017; Liu et al.,
2017) were proposed based on SQuAD data set
(Rajpurkar et al., 2016). Their performances have
been very close to or even exceeded the human
performance on this dataset.

In this paper, we introduce a simple ensemble
method on multiple identical attention-based BiL-
STM models, only changing the dropout parame-
ters in each model. We use each model to generate
a soft prediction, and sum each result, then take
the sum as the final prediction result. Experiments
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Figure 1: Our attention-based BiLSTM model for ma-
chine comprehension.

show that the ensemble model is about 2% higher
than the single model in terms of accuracy on both
development and test sets. Besides, we also made
our code available online2.

2 System Description

Our model is called an ensemble of attention-
based BiLSTM models. Firstly, we use an em-
bedding layer to obtain the distributed representa-
tions of the instance, question and answer triples.
They are encoded by three different BiLSTM lay-
ers. The attention mechanism is implemented by
dot products via a merge layer. Finally, we assign
the same weight to each model when ensembling.
The final result is the sum of the soft probabili-
ties yielded by each single model. We keep the
structure of each model the same, just fine tune
the dropout parameters. The model architecture
is shown in Figure 1. The attention mechanism
is developed by calculating the dot product of the
outputs from two BiLSTM layers. Then we use
’||’ operation to concatenate two matrices from
the previous layer in the specified dimension. Fi-
nally, a Dense fully connected layer with activa-
tion softmax is used to get the predicted proba-
bilities.

2https://github.com/Deep1994/An-Ensemble-
of-Attention-based-BiLSTM-Model-for-Machine-
Comprehension

2.1 BiLSTM

Single direction LSTM (Hochreiter and Schmid-
huber, 1997) suffers a weakness of not using the
contextual information from the future tokens.
Bidirectional LSTM (BiLSTM) exploits both the
previous and future context by processing the se-
quence on two directions and generates two inde-
pendent sequences of LSTM output vectors. One
processes the input sequence in the forward di-
rection, while the other processes the input in the
backward direction. The words in the instances,
questions and answers are represented by the con-
catenation of the hidden layer outputs in both di-
rections at each time step.

2.2 Word Embedding

Word embedding is arguably the most widely
known technology in the recent history of NLP.
It is well-known that using pre-trained embed-
ding helps (Kim, 2014). We try two word em-
bedding tools, GloVe (Pennington et al., 2014) and
Word2Vec (Mikolov et al., 2013) on this task.

Tool Size Vocab Dimension
GloVe 5.5G 2.2million 300

Word2Vec 3.5G 3million 300

Table 1: Summary statistics for the embedding tools:
Size is the file size after decompression. Both tools
have a dimension of 300. The Vocab is the number of
word vectors contained in the tool.

2.3 Attention Mechanism

The LSTM model can alleviate the problem of gra-
dient vanishing, but this problem persists in long
range reading comprehension contexts. The atten-
tion mechanism breaks the constraint on fix-length
vector as the context vector, enables the model to
focus on those more helpful to outputs. (Luong
et al., 2015) presented several attention computa-
tion ways, such as dot, general, concat. In our
model, we adopt the dot mode to compute the at-
tention. After BiLSTM layer, we implement a dot
product operation on the output vectors produced
by previous layer. It is proven effective to improve
the performance of our model.

The attention mechanism in our model uses a
matching function f to associate the target mod-
ule with the source module, the function f is im-
plemented as follows:

f(mt,ms) = mt
Tms (1)
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Figure 2: The ensemble method used in our model. The
dropout parameters for the five models varied from 0.2
to 0.6 after the BiLSTM layer.

where mt and ms correspond to instance and
question vectors, or answer and question vectors
produced by previous BiLSTM layers, respec-
tively.

2.4 Model Ensemble
Combining multiple models into an ensemble by
averaging their predictions is a proven strategy
to improve model performance. While predict-
ing with an ensemble is expensive at test time, re-
cent advances in distillation allow us to compress
an expensive ensemble into a much smaller model
(Hinton et al., 2015; Kuncoro et al., 2016; Kim and
Rush, 2016).

In our model, each single model will yield a soft
probability to determine if the candidate answer is
correct or not. As is shown in figure 2, we train
several models and sum the results produced by
them. Then we use the sum of the probabilities
as the final prediction. We found that the perfor-
mance of the ensemble model is always better than
that of a single model.

3 Experiments

We run each model 10 times, taking the average
results as the final experimental results to enhance
reliability. In all single models, the dropout pa-
rameter is taken as 0.3, and the ensemble model is
trained through 5 BiLSTM models. Their dropout
parameters are changed from 0.2 to 0.6, respec-
tively, and then the results of the 5 models are
summed as the final prediction. We set epoch =
6, batch size = 512 and LSTM Units = 64. Op-
timization is carried out using Adaptive Moment
Estimation (Adam).

3.1 Data Processing
The organizers provided training, development,
and test sets, containing 9837, 1417, 2797 ques-
tions, respectively. Each question corresponds two
answers, only one is correct.

We firstly substitute the abbreviation characters
and remove the meaningless characters. Then we
combine the instance, question and answer as the
supervised training set. Labels are represented
by 0 (False) or 1 (True). The TweetTokenizer3 in
NLTK is adopted for word segmentation. Further-
more, we find the maximum length of instances is
much longer than that of questions and answers,
so we remove the stop words in the instances. Our
experiments show that doing so not only does not
harm the accuracy, but also drastically reduces the
training time.

3.2 Experiments and Result Analysis
We compare two word embedding tools,
Word2Vec and GloVe, and the experimental
results show that GloVe almost always outper-
forms Word2Vec on this task. Although the
vocabularies in GloVe are less than those in
Word2Vec, GloVe contains more abbreviations,
which are especially useful after tokenizing
the instance, question and answer triples, and
greatly reduce the number of unknown words in
word embedding, making the context semantics
better learned by the model. We make random
assignments on unknown words, ranging from
-0.25 to 0.25.

Tool Ukw Time Dev Acc Test Acc
GloVe 33 597s 0.7448 0.7276

Word2Vec 276 40s 0.7415 0.7087

Table 2: Comparison between Word2Vec and GloVe
tools on BiLSTM models. Ukw is the number of un-
known words. Time is the loading time of two tools.
We can see GloVe performs better, but its loading time
is much longer than that of Word2Vec.

As seen in Table 3, we compare two network ar-
chitectures, LSTM and BiLSTM. The results show
that the BiLSTM model performs better than the
LSTM model on this task.

Based on Glove word embedding and BiLSTM
architecture, we train 5 single models for ensem-
ble. The only difference between them is the dif-
ference in dropout parameters, which increases
from 0.2 to 0.6. In our experiments, we train the

3http://www.nltk.org/api/nltk.tokenize.html
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Network Tool Dev Acc Test Acc
LSTM GloVe 0.7448 0.7276

BiLSTM GloVe 0.7508 0.7301

Table 3: Comparison between LSTM and BiLSTM.
BiLSTM performs better than LSTM on both datasets.

single model with the dropout in order of 0.3, 0.5,
0.4, 0.2, 0.6, then the first ensemble is the result
of adding the first two models with the dropout
of 0.3, 0.5 as the predictive result, the result of
the second ensemble is based on the first ensemble
plus the single model with dropout of 0.4, and so
on. We perform a total of 4 ensemble experiments,
the results show that the accuracy of each ensem-
ble model improved on both datasets. The final
ensemble model has an accuracy rate of 0.7699
on the development set and 0.7472 on the test set.
However, we find that our model was slightly more
accurate on the test set without the ensemble of
the model with a dropout of 0.6, but the overall
effect is not obvious. Ensemble makes our model
perform well on this task, ranking 5th out of 11
submissions.

Dropout Dev Acc Test Acc
0.3 0.7476 0.7311
0.5 0.7516 0.7183

Ensemble 1 0.7608 0.7386
0.4 0.7615 0.7294

Ensemble 2 0.7692 0.7408
0.2 0.7354 0.7143

Ensemble 3 0.7664 0.7479
0.6 0.7410 0.7308

Ensemble 4 0.7699 0.7472

Table 4: Results on single and ensemble models. All
models adopt GloVe + Attention-based BiLSTM archi-
tecture. The dropout layer is behind the BiLSTM layer.

4 Conclusion and Future Work

In this paper, we present an ensemble of attention-
based BiLSTM models for machine comprehen-
sion task. We find GloVe is superior to Word2Vec
on this task, a simple ensemble method can signif-
icantly enhance the overall performance.

In the future, we plan to explore more ways
to compute the attention, such as a bilinear term.
Future work also involves using more external
knowledge and deeper network to improve model
performance. We will explore the ensemble
method in greater depth, trying ensemble on the
models with more structural difference.
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