
Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 1034–1037
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

ELiRF-UPV at SemEval-2018 Task 11: Machine Comprehension using
Commonsense Knowledge

José-Ángel González, Lluı́s-F. Hurtado, Encarna Segarra, Ferran Pla
Universitat Politècnica de València
Camı́ de Vera sn, 46022, València

{jogonba2|lhurtado|esegarra|fpla}@dsic.upv.es

Abstract
This paper describes the participation of
ELiRF-UPV team at task 11, Machine Com-
prehension using Commonsense Knowledge,
of SemEval-2018. Our approach is based on
the use of word embeddings, NumberBatch
Embeddings, and a Deep Learning architec-
ture to find the best answer for the multiple-
choice questions based on the narrative text.
The results obtained are in line with those ob-
tained by the other participants and they en-
courage us to continue working on this prob-
lem.

1 Introduction

In the Machine Comprehension using Common-
sense Knowledge task, systems must answer
multiple-choice questions given narrative texts
about everyday activities. In addition to what is
mentioned in the text, a substantial number of
questions require inference using script knowl-
edge about different scenarios.

In order to capture some script knowledge we
decided to use a word representation based not
only on distributional semantics word models but
also on a knowledge graph, ConceptNet (Speer
et al., 2016). ConceptNet is a knowledge graph
that connects words and phrases of natural lan-
guage with labeled edges. It is designed to rep-
resent the general knowledge involved in under-
standing language. ConceptNet could be used
in combination with sources of distributional se-
mantics, particularly the word2vec Google News
skip-gram embeddings (Mikolov et al., 2013)) and
GloVe 1.2 (Pennington et al., 2014), to produce
new embeddings, NumberBatch embeddings, with
state-of-the-art performance across many word-
relatedness evaluations (Speer and Lowry-Duda,
2017).

More specifically, NumberBatch is a list of se-
mantic word vectors which contains a complex

meaning of those terms, beyond containing only
contextual information like other kinds of em-
beddings based on distributional semantics e.g.
Word2Vec or Glove. These embeddings are ob-
tained through a combination of Word2Vec and
Glove embeddings with knowledge extracted from
ConceptNet by means of a technique known as
retrofitting (Faruqui et al., 2014).

In this work, we used word representations
based on NumberBatch embeddings because these
representations encode semantically rich informa-
tion related to the commonsense. Moreover, in or-
der to tackle this machine comprehension task, we
used a Deep Learning architecture with new atten-
tion mechanisms. The inclusion of these new at-
tention mechanisms allow us to better capture the
similarities among the elements of the input. The
attention mechanisms we introduce in this work
are suggested in the work (Seo et al., 2016), that
obtained very competitive results in Question An-
swering tasks.

2 Resources and Preprocess

As we pointed in Section 1, NumberBatch embed-
dings were used for the representation of words.
These embedding are provided by ConceptNet 5,
which was compiled by the Commonsense Com-
puting Initiative. ConceptNet 5 is freely avail-
able under the Creative Commons Attribution-
ShareAlike license (CC BY SA 4.0) from http:
//conceptnet.io.

We explored several preprocessing techniques
in the development phase The best results were
obtained with the following preprocess: the con-
version of all text to lowercase and the elimination
of the question marks “?”. After this, we carried
out a tokenization process.

1034

3 System Description

We tested Deep Learning architectures based on
similarities between d-dimensional NumberBatch
embeddings of story (x), question (q) and answer
(r). Specifically, our approaches learn representa-
tions of x, q and r to first compute similarities, and
then make a classification decision.

These kind of systems work well in Question
Answering tasks, for instance, BiDAF (Seo et al.,
2016) or QA-LSTM-Story(Pal and Sharma, 2016).
For this reason, with the aim of improving the ac-
curacy of these systems for this task, we incorpo-
rated some attention mechanisms of BiDAF in the
QA-LSTM-Story system. A scheme of our system
is shown in Figure 1.

Figure 1: System architecture.

All Deep Learning systems tested in this work
take first a story (x ∈ R{T,d}), a question (q ∈
R{J,d}) and an answer (r ∈ R{P,d}) as input.
Specifically, each of these elements is a matrix
with their word embeddings as rows. Note that
the length of the representations (T , J and P) is
fixed by adding zero padding at the beginning to
reach the length of the longest element.

Second, x, q and r are processed by means of
three non-shared Bidirectional Long Short Term
Memory (BLSTM) (Hochreiter and Schmidhuber,
1997) (Schuster and Paliwal, 1997). These net-
works capture useful features (X , Q and R) to
make decisions based on similarities among the
inputs. Moreover, we used BatchNormalization
(Ioffe and Szegedy, 2015) and Dropout (Srivastava
et al., 2014) with p = 0.3, after the input layer and

after the BLSTM output to improve the general-
ization of the model.

After that, we compute similarities between
each term of Q and each term of X (S1 = QX ∈
R{J,T}) and similarities between each term of R
and each term of Q (in a similar way, S2 = RQ ∈
R{P,J}).

Now, if we concatenate S1 and S2, and we ap-
ply a fully-connected layer with softmax activa-
tion functions to classify, we reproduce exactly the
QA-LSTM-Story system. However, in this work,
we incorporated several attention mechanisms to
this architecture in order to learn more complex
relationships among the inputs.

One of these attention mechanisms is an adap-
tation of BiDAF. This adaptation used, in addi-
tion to Query2Context (Q2X) and Context2Query
(X2Q), two additional attention mechanisms, An-
swer2Query (R2Q) and Query2Answer (Q2R).
R2Q and Q2R are identical to X2Q and Q2X but
applied to the question q and the answer r.

We have also tested many other attentions, but
the best system obtained in the development phase
only contains X2Q. In order to obtain this atten-
tion, we first transform the similarities S1 by ap-
plying a softmax activation function to each row
i.e. A[i, j] = eS1[i,j]∑T

t=0 e
S1[i,t]

. After this, we com-

pute Q̃ = AX , to represent each row of Q as a
weighted sum of the rows in X . That is, each row
of Q is adapted in order to consider the most rele-
vant rows of X .

From Q̃, we can consider more explicit relation-
ships between x and r if we compute the similari-
ties between Q̃ and R, in the same way as S1 and
S2, to obtain S3.

With all, we transpose the matrix S1 to later
concatenate all the similarity matrices. The re-
sult, (Sᵀ

1 , S2, S3) ∈ R{(T+2P),J}, is flattened by
concatenating all rows as columns to obtain a vec-
tor O(T+2P)∗J . Finally, we apply a softmax fully-
connected layer to O to carry out the classification.

To train the system, we generated a training set
consisting of all the triples of the corpus (x, q, r).
Thus, for each x and q, we generate two triples,
(x, q, r1) and (x, q, r2). Then, if r1 is correct,
y(x, q, r1) = 1, else y(x, q, r1) = 0. At inference
time, given x, q and their two possible answers
r1 and r2, we first build two triples (x, q, r1) and
(x, q, r2) and, second, we obtain the network out-
puts y1 and y2, respectively. Finally, in order to
decide which answer is correct, we select the one

1035

Sys. System Description Acc. (%)
1 QA-LSTM-Story 79.21
2 BiDAF Adaptation 76.47
3 QA-LSTM-Story with X2Q 80.08

Table 1: Results on the development set.

Team Acc. (%)
Yuanfudao (1/11) 83.95
Mitre (2/11) 82.27
Jiangnan (3/11) 80.91
ELiRF-UPV (4/11) 74.97
YNU Deep (5/11) 74.72

· · ·
IUCM (11/11) 61.35

Table 2: Official results on the test set.

that maximizes the output for the correct class i.e.
yi[1] (2nd component of the network output for a
triple i).

4 Experimental Results

The results obtained during the development phase
for the different systems above mentioned are
shown in the Table 1. It can be observed that Deep
Learning systems with simpler attention mecha-
nisms worked better than those with more com-
plex attention mechanisms (system 2 versus sys-
tems 1 and 3). If X2Q was added to compute more
explicit relations between x and r, the accuracy
slightly improved from 79.21% to 80.08% (system
1 versus system 3). Moreover, we tested system 3
with word2vec (Google News skip-gram) instead
of NumberBatch embeddings obtaining an accu-
racy of 78.84%.

With these results, we chose the best system in
the development phase (system 3 in Table 1).

The results obtained with this system on the test
set are shown in Table 2.

5 Analysis of Results

Now, we make an analysis of the results obtained
with our best system. In particular, we analyze
the network confidence at intervals when deciding
what is the correct answer (r1 or r2) given a story
x and a question q. This confidence c is defined as
the absolute difference between the outputs for the
correct class of each answer (y1[1] and y2[1]) i.e.
c = |y1[1]− y2[1]|.

During this analysis, we get a maximum con-
fidence c

max
= 0.999 and a minimum confidence

c
min

= 0.000. Thus, there are extreme cases where

the system is totally sure about what is the correct
answer, or has total uncertainty. In the instance
(ix = 235, iq = 1), we observe that the system
is totally sure about the correct answer due to the
answer has been explicitly found in the story. In
a second instance (ix = 131, iq = 4), the sys-
tem has total uncertainty because “$20.00” and
“$15.00” do not appear in the NumberBatch em-
beddings. (Where ix and iq refers to the index of
the story and the question in the test set).

Figure 2: Accuracy in each confidence interval.

Figure 3: Number of samples in each confidence inter-
val.

Moreover, we have also performed a study on
the system accuracy and the number of samples for
each confidence level between [0, 1]. The results
obtained are shown in the Figures 2 and 3.

In general, as it can be observed in Figure 2,

1036

the greater the confidence, the better results were
obtained. However, in Figure 3, we observed that
there are many samples with very low confidence
values, e.g. 0.0-0.1. We think that in order to re-
duce the number of samples in this confidence in-
terval, it would be necessary to incorporate new
knowledge resources.

6 Conclusions

In this work, we presented a Deep Learning archi-
tecture with new attention mechanisms in order to
learn more complex representations and similari-
ties among input elements (story x, question q and
answer r). In order to capture some script knowl-
edge, NumberBatch embeddings were used for the
representation of words. With this approach we
obtained competitive results.

As future work, we propose the study and de-
velopment of new attention mechanisms to learn
complex features and relationships. Moreover, we
also find interesting the enrichment of the Deep
Learning architectures with some commonsense
information beyond the use of NumberBatch em-
beddings, such as the script knowledge resources
suggested by the competition organizers.

7 Acknowledgements

This work has been partially supported by the
Spanish MINECO and FEDER founds under
projects ASLP-MULAN: Audio, Speech and
Language Processing for Multimedia Analytics
(TIN2014-54288-C4-3-R); and AMIC: Affective
Multimedia Analytics with Inclusive and Natural
Communication (TIN2017-85854-C4-2-R). Work
of José-Ángel González is also financed by Uni-
versitat Politècnica de València under grant PAID-
01-17.

References
Manaal Faruqui, Jesse Dodge, Sujay Kumar Jauhar,

Chris Dyer, Eduard H. Hovy, and Noah A. Smith.
2014. Retrofitting word vectors to semantic lexi-
cons. CoRR, abs/1411.4166.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long Short-Term Memory. Neural Computation,
9(8):1735–1780.

Sergey Ioffe and Christian Szegedy. 2015. Batch
normalization: Accelerating deep network train-
ing by reducing internal covariate shift. CoRR,
abs/1502.03167.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013. Distributed represen-
tations of words and phrases and their composition-
ality. CoRR, abs/1310.4546.

Sujit Pal and Abhishek Sharma. 2016. Deep learn-
ing models for question answering. Elsevier Search
Guild Question Answering Workshop.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word
representation. In EMNLP, volume 14, pages 1532–
1543.

M. Schuster and K.K. Paliwal. 1997. Bidirectional
recurrent neural networks. Trans. Sig. Proc.,
45(11):2673–2681.

Min Joon Seo, Aniruddha Kembhavi, Ali Farhadi,
and Hannaneh Hajishirzi. 2016. Bidirectional at-
tention flow for machine comprehension. CoRR,
abs/1611.01603.

Robert Speer, Joshua Chin, and Catherine Havasi.
2016. Conceptnet 5.5: An open multilingual graph
of general knowledge. CoRR, abs/1612.03975.

Robert Speer and Joanna Lowry-Duda. 2017. Con-
ceptnet at semeval-2017 task 2: Extending word
embeddings with multilingual relational knowledge.
CoRR, abs/1704.03560.

Nitish Srivastava, Geoffrey E. Hinton, Alex
Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. 2014. Dropout: a simple way to prevent neural
networks from overfitting. Journal of Machine
Learning Research, 15(1):1929–1958.

1037

