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Abstract

We describe the University of Mary-
land’s submission to SemEval-018 Task
10, “Capturing Discriminative Attributes”:
given word triples (w1, w2, d), the goal is
to determine whether d is a discriminat-
ing attribute belonging to w1 but not w2.
Our study aims to determine whether word
embeddings can address this challenging
task. Our submission casts this problem as
supervised binary classification using only
word embedding features. Using a gaus-
sian SVM model trained only on valida-
tion data results in an F-score of 60%. We
also show that cosine similarity features
are more effective, both in unsupervised
systems (F-score of 65%) and supervised
systems (F-score of 67%).

1 Introduction

SemEval-2018 Task 10 (Krebs et al., 2018) offers
an opportunity to evaluate word embeddings on
a challenging lexical semantics problem. Much
prior work on word embeddings has focused
on the well-established task of detecting seman-
tic similarity (Mikolov et al., 2013a; Pennington
et al., 2014; Baroni et al., 2014; Upadhyay et al.,
2016). However, semantic similarity tasks alone
cannot fully characterize the differences in mean-
ing between words. For example, we would ex-
pect the word car to have high semantic similar-
ity with truck and with vehicle in distributional
vector spaces, while the relation between car and
truck differs from the relation between car and
vehicle. In addition, popular datasets for simi-
larity tasks are small, and similarity annotations
are subjective with low inter-annotator agreement
(Krebs and Paperno, 2016).

Task 10 focuses instead on determining seman-
tic difference: given a word triple (w1, w2, d), the
task consists in predicting whether d is a discrim-
inating attribute applicable to w1, but not to w2.
For instance, (w1 =apple, w2 =banana, d =red)
is a positive example as red is a typical attribute of
apple, but not of banana.

This work asks to what extent word embed-
dings can address the challenging task of detect-
ing discriminating attributes. On the one hand,
word embeddings have proven useful for a wide
range of NLP tasks, including semantic similar-
ity (Mikolov et al., 2013a; Pennington et al., 2014;
Baroni et al., 2014; Upadhyay et al., 2016) and de-
tection of lexical semantic relations, either explic-
itly by detecting hypernymy, lexical entailment
(Baroni et al., 2012; Roller et al., 2014; Turney and
Mohammad, 2013), or implicitly using analogies
(Mikolov et al., 2013b). On the other hand, de-
tecting discriminating attributes requires making
fine-grained meaning distinctions, and it is unclear
to what extent they can be captured with opaque
dense representations.

We start our study with unsupervised models.
We propose a straightforward approach where pre-
dictions are based on a learned threshold for the
cosine similarity difference between (w1, d) and
(w2, d), representing words using Glove embed-
dings (Pennington et al., 2014). We use this unsu-
pervised approach to evaluate the impact of word
embedding dimensions on performance.

We then compare the best unsupervised config-
uration to supervised models, exploring the impact
of different classifiers and training configurations.
Using word embeddings as features, supervised
models yield high F-scores on development data,
on the final test set they perform worse than the
unsupervised models. Our supervised submission
yields an F-score of 60%. In later experiments,
we show that using cosine similarity as features
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is more effective than directly using word embed-
dings, reaching an F-score of 67%.

2 Task Data Overview

Dataset Pos Neg Total d Vocab

train 6,591 11,191 17,782 1,292
validation 1,364 1,358 2,722 576

test 1,047 1,293 2,340 577

Table 1: Dataset statistics for the training and val-
idation set: number of positive examples (Pos),
number of negative examples (Neg), total number
of examples (total), size of vocabulary for discrim-
inant words d (d Vocab)

For development purposes, we are provided
with two datasets: a training set and a validation
set, whose statistics are summarized in Table 1.

Word triples (w1, w2, d) were selected using the
feature norms set from McRae et al. (2005). Only
visual discriminant features were considered for
d, such as is green. Positive triples (w1, w2, d)
were formed by selecting w2 among the 100 near-
est neighbors of w1 such that a visual feature d
is attributable to w1 but not w2. Negative triples
were formed by either selecting an attribute at-
tributable to both words, or by randomly selecting
a feature not attributable to either word.

The distribution of the training and validation
sets differ: the validation and test sets are bal-
anced, while only 37% of examples are positive
in the training set. In addition, the validation and
test sets were manually filtered to improve quality,
so the training examples are more noisy. The data
split was chosen to have minimal overlap between
discriminant features.

3 Unsupervised Systems

All our models rely on Glove (Pennington et al.,
2014), generic word embeddings models, pre-
trained on large corpora: the Wikipedia and En-
glish Gigaword newswire corpora. In addition to
capturing semantic similarity with distances be-
tween words, Glove aims for vector differences to
capture the meaning specified by the juxtaposition
of two words, which is a good fit for our task.

Because the discriminant features are distinct
between train, validation and test, our systems
should be able to generalize to previously unseen

discriminants. This makes approaches based on
word embeddings attractive, as information about
word identity is not directly encoded in our model.

3.1 Baseline
We first consider the baseline approach introduced
by Krebs and Paperno (2016) to detect the positive
examples, where cs denotes the cosine similarity
function:

cs(word1, disc) > cs(word2, disc) (1)

3.2 2-Step Unsupervised System
We refine this baseline with a 2-step approach.
Our intuition is that d is a discriminant between
w1 and w2 if the following two conditions hold si-
multaneously:

1. w1 is more similar to d than w2 by more than
a threshold tthresh:

cs(w1, d)− cs(w2, d) > tthresh (2)

2. d is highly similar to w1:

cs(w1, d) > tdiverge (3)

The condition in Equation 2 aims at detecting
negative examples that share the discriminant at-
tribute, and the condition defined by Equation 3
targets negative examples that share a random dis-
criminant. Thresholds tthresh and tdiverge are
hyper-parameters tuned on the train.txt.

3.3 Results
We evaluate unsupervised systems using word em-
beddings of varying dimensions on the validation
set, and report averaged F-scores. As can be seen
in Table 2, increasing the dimension of word em-
beddings improves performance for both systems,
and the 2-step model consistently outperforms the
baseline. The best performance is obtained by the
2-step model with 300-dimensional word embed-
dings. We therefore select these embeddings for
further experiments.

Vector Dim 50 100 200 300

baseline .5765 .5965 .6171 .6183
2-step model .4034 .6130 .6266 .6312

Table 2: Averaged F-Score across GloVe Dimen-
sions between our 2-step unsupervised system and
the baseline from Krebs and Paperno (2016), for
word vectors of size 50, 100, 200 and 300.
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4 Supervised Systems

4.1 Submitted System

During system development, we consider a range
of binary classifiers that operate on feature repre-
sentations derived from word embeddings ~w1, ~w2

and ~d. We describe the system used for submis-
sion which was selected based on 10-fold cross-
validation using the concatenation of the training
and validation data.

Feature Representations We seek to capture
the difference in meaning between w1 and w2

and its relation to the meaning of the discrimi-
nant word d. Given word embeddings for each of
these words ~w1, ~w2 and ~d, respectively, we there-
fore construct input features based on various em-
bedding vector differences. We experimented with
the concatenation of ~w1, ~w2, ~d, ~w1− ~d and ~w1− ~d.
Based on cross-validation performance on training
and validation data, we eventually settled on the
concatenation of ~w1 − ~d and ~w1 − ~d, which yields
a compact representation of 2D features, if D is
the embedding dimension.

Binary Classifier We consider a number of bi-
nary classification models found in scikit-learn:
logarithmic regression (LR), decision tree (DT),
naı̈ve Bayes (NB), K nearest neighbors (KNN),
and SVM with linear (SVM-L), and Gaussian
(SVM-G) kernels. We compare linear combina-
tions of word embeddings to the more complex
combinations enabled by non-linear models.

Submission Our submission used the refined
SVM-G trained on validation.txt. There were
three input triplets for which one word was out
of the vocabulary of the Glove embedding model:
random predictions were used for these. This
system achieved an F-Score of .6018. This
is a substantial drop from the averaged cross-
validation F-scores obtained during development
which reached F-scores of 0.9318 using cross-
validation on the validation and training sets to-
gether, and 0.9674 using cross-validation on the
training set only. Using the released test dataset,
truth.txt, we consider various experiments to un-
derstand the poor performance of the model.

4.2 Analysis: Embedding Selection

We first evaluate our hypothesis that word embed-
dings that perform well in the unsupervised setting

would also, in general, perform well for classifica-
tion. We vary embedding dimensions keeping the
rest of the experimental set-up constant (train on
validation.txt, evaluate on truth.txt).

Table 3 shows the performance of all supervised
model configurations and of the 2-step unsuper-
vised system. Increasing the word embedding di-
mensions improves the performance of the 2-step
unsupervised system, as observed during the de-
velopment phase (Section 3). However, the su-
pervised classifier behaves differently: for sev-
eral linear classifiers (e.g., LR, DT, SVM-L) the
best performance is achieved with smaller word
embeddings. For the non-linear SVM used for
submission (SVM-G), varying the embedding di-
mensions has little impact on overall performance.
The SVM-G classifier’s performance is now on
par with the linear classifiers, while it performed
better on development data.

The best performance overall is achieved by the
unsupervised model, and taken together, the su-
pervised results suggest that the submitted system
overfit the validation set, and was not able to gen-
eralize to make good predictions on test examples.

4.3 Analysis: Feature Variants
Motivated by the good performance of the un-
supervised model based on cosine similarity, we
consider four feature representations variants for
the supervised classifiers,1:

V 1 = [cs(w1, w2), cs(w1, wd), cs(w2, d)]
V 2 = [V 1, w1 − w2, wd]
V 3 = [V 1, w1 − wd, w2]
V 4 = [V 1, cs(w1 − w2, wd), cs(w1 − wd, w2)]

Variant V1 based only on cosine similarity be-
tween all pairs yields competitive F-scores from
both the SVM-G and LR models (Table 4), and
it competitive with the best-performing unsuper-
vised model. We thus use it as a starting point
for subsequent variants. Variants V2 and V3 en-
code the intuition that we expect w1 − w2 ≈ wd

and w1 − wd ≈ w2 for positive examples, and
therefore, it is possible that these input represen-
tations may perform better than the differences-
only model. In doing so, we also risk memo-
rizing actual input words as wd and w2 are en-
coded directly as features. These two variants per-
formed worse than the cosine-only models, sug-
gesting that cosine similarity captures semantic

1The KNN, SVM-L, and SVM-G used tuned hyperparam-
eters.
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Model dim=50 dim=100 dim=200 dim=300
F P R F P R F P R F P R

LR .5742 .5750 .5741 .5769 .5788 .5770 .5739 .5741 .5738 .5525 .5525 .5524
DT .5494 .5498 .5503 .5356 .5357 .5359 .5304 .5311 .5314 .5283 .5290 .5293

NB .5618 .5674 .5634 .5873 .5999 .5903 .5885 .5904 .5884 .5908 .5972 .5918
KNN .5640 .5746 .5677 .5677 .5715 .5720 .5738 .5737 .5740 .5537 .5575 .5579

SVM-L .5769 .5778 .5768 .5847 .5904 .5856 .5781 .5791 .5779 .5364 .5372 .5376
SVM-G .5901 .5909 .5919 .6098 .6099 .6097 .5924 .5923 .5924 .5995 .6002 .5993

2-step .5937 .5938 .5947 .6042 .6041 .6044 .6278 .6278 .6290 .6484 .6481 .6490

Table 3: F-Score, Precision and Recall computed on truth.txt for the full range of supervised classi-
fication models across different embedding dimensions trained on validation.txt. The first 6 row are
supervised systems, the last row shows the performance of the unsupervised 2-step system.

Vector Dim. 50 100 200 300

V1-LR .6083 .6076 .6369 .6526
V1-KNN .6045 .6115 .6335 .6587
V1-SVMG .6039 .6227 .6479 .6681

V2-LR .6398 .6475 .6463 .6490
V2-KNN .5376 .5239 .5334 .5221
V2-SVMG .6304 .6435 .6592 .6598

V3-LR .6203 .6108 .6167 .6193
V3-KNN .5356 .5182 .5116 .5308
V3-SVMG .6099 .6233 .6269 .6309

V4-LR .6089 .6072 .6378 .6525
V4-KNN .6088 .6120 .6402 .6589
V4-SVMG .6102 .6239 .6451 .6708

Table 4: F-score for well-performing models of
alternative input variant representations

difference better than the high-dimensional word
vectors themselves. Also interestingly, the KNN
model performed significantly worse in these two
variants. The best result is achieved using V4,
which augments V1 with cosine features that bet-
ter capture word relations through embedding dif-
ferences, with an averaged F-score of .6708 using
the SVM-G classifier.

4.4 Analysis: Cross-Validation Set-up
We further explore why cross-validation scores
differed greatly from the final test scores. We con-
structed initial cross-validation sets using sequen-
tial 10% cuts of the training set. This is inconsis-
tent with the actual experimental setup, which had
distinct sets of d, the discriminating attribute, be-
tween the training and test sets. We experiment
segmenting the validation dataset so that each of
the cross-validation sets had distinct discriminat-

ing attributes. This yields only minor gains (Ta-
ble 5), suggesting that overfitting to the identity of
the discriminating attributes was not an issue.

Vector Dim. 50 100 200 300

V4-KNN .6050 .6172 .6394 .6574
V4-SVML .6109 .6042 .6301 .6478
V4-SVMG .6104 .624 .6404 .6716

Table 5: F-score from well-formed cross-
validation sets

5 Conclusion

This study showed the limits of directly using
word embeddings as features for the challeng-
ing task of capturing discriminative attributes be-
tween words. Supervised models based on raw
embedding features are highly sensitive to the na-
ture and distribution of training examples. Our
Gaussian Kernel SVM overfit the training set and
performed worse than unsupervised models that
threshold cosine similarity scores on the official
evaluation data. Based on this finding, we ex-
plore the use of cosine similarity scores as fea-
tures for supervised classifiers, to capture similar-
ity between word pairs, and between words and
word relations as represented by embedding dif-
ferences. These features turn out to be more use-
ful than directly using the word embedding them-
selves, yielding our best performing system (F-
score of 67%).

While these results are encouraging, it remains
to be seen how to best design models and fea-
tures that capture nuanced meaning differences,
for instance by leveraging metrics complementary
to cosine and resources complementary to distri-
butional embeddings.
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