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Abstract

We participated to the SemEval-2018 shared
task on capturing discriminative attributes
(Task 10) with a simple system that ranked
8th amongst the 26 teams that took part in the
evaluation. Our final score was 0.67, which
is competitive with the winning score of 0.75,
particularly given that our system is a mini-
mally supervised system that requires no train-
ing and minimal parameter optimisation. In
addition to describing the submitted system,
and discussing the implications of the relative
success of such a system on this task, we also
report on other, more complex models we ex-
perimented with.

1 Introduction and Background

Traditional evaluation tasks for semantic mod-
els have aimed to evaluate semantic relatedness
(Bruni et al., 2014; Agirre et al., 2009) or similar-
ity (Hill et al., 2014). More recently, analogy tasks
(Mikolov et al., 2013; Gladkova et al., 2016; Ab-
dou et al., 2018) have emerged in order to assess
a model’s ability to correctly answer questions in
the form of “a is to b as ¢ is to ?7” using vector
arithmetic. However, these approaches are not suf-
ficient in evaluating the semantic competence of
any given model: there are numerous flaws with
similarity and analogy-based evaluation, the most
pressing being the lack of correlation with down-
stream performance in real-world tasks (Schnabel
et al., 2015). Furthermore, though analogy ques-
tions can assess how well certain semantic rela-
tions are modeled (country : capital, country: lan-
guage), this is arguably more of a measure of con-
text co-occurrence than it is a testament to any se-
mantic understanding.

Capturing Discriminative Attributes is a novel
semantic evaluation task which aims to assess the
extent to which semantic models can capture se-
mantic differences between words. Particularly,
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the task is concerned with identifying how well
a given model represents attributes that discrimi-
nate between two related semantic concepts. For
instance, given the terms steak and salad, meat
would serve as a discriminative attribute, drawing
a distinction between the former and latter as a
quality that the two do not have in common.

2 Data

The data provided for this task was split between
training and validation sections, with 17,500 and
2,721 samples comprising the former and latter,
respectively. Every sample was composed of three
terms (pivot, comparison, and feature) and their
corresponding label € {0,1}. A sample was
deemed as discriminative (label 1) if the feature
served as an attribute that distinguished the pivot
from the comparison. Otherwise, the sample was
labeled as non-discriminative (0). Examples from
the data are shown in Table 2. Please note that di-
rectionality is meaningful, i.e., swapping the pivor
and comparison columns for the first two exam-
ples can change the label. For instance, pink is
considered as discriminative for pig with regard to
sheep (label is 1), but not the other way round (la-
bel would be 0). For a detailed description of the
dataset, see (Krebs et al., 2018).

pivot comparison feature label
sandwiches breakfast lunch 1
pig sheep pink 1
banana raisin round 0
uncle father male 0

Table 1: Samples of provided data. In the first two
samples, the feature is discriminative (sandwiches are
eaten at lunch; pigs are pink). In the last two, the fea-
ture is not discriminative (neither bananas nor raisins
are round; an uncle and a father are both male).
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It is important to note that only 5,000 instances
were manually verified for consistency out of the
combined training and validation datasets. Thus,
whilst the entire validation set comprised of a
subset of these verified samples (2,721), only
2,279 were represented in the training set (13%).
Furthermore, the training set was heavily im-
balanced towards negative (‘“non-discriminative”)
samples, accounting for a total 11,171 out of
17,500 (63.8%). As such, we largely focused
our experiments on the validation set, since it was
comprised entirely of manually curated data.

3 Models

In all models we describe, words not present in the
vocabulary of a vector-space model were assigned
the same ‘unknown’ vector drawn randomly from
a normal distribution.

3.1 Baseline

The baseline we constructed was a simple support-
vector machine classifier. We converted each word
into a vector from a vector-space model. For ev-
ery 4-tuple example, we passed the concatenation
of vectors of the three words as a feature with the
fourth as a label. This model failed to learn suf-
ficiently, performing at near-chance levels on the
validation set for all vector-space models.

3.2 Neural Models

Another model (NN) that we investigated was a
feed-forward network with the concatenation of
the word vector representations as an input layer,
and a single binary output neuron as the output.
Ultimately, we employed three hidden layers of
sizes 450, 200 and 100, with ReLU as the ac-
tivation function for each, and 20% dropout be-
tween each layer. Our output function was a sig-
moid function. We used binary cross-entropy loss
with a learning rate of 10~° and Adam (Kingma
and Ba, 2014) as our stochastic optimization func-
tion. This model outperformed the baseline for all
vector-space models on the validation set.

Our next model (NN-WN) was built on the in-
tuition that representations of more descriptive el-
ements than just words could prove to be more
helpful. We therefore converted each word into
its first matching definition in WordNet (Miller,
1995), and condensed this definition into a di-
mension 4096 representation using Conneau et al.
(2017)’s BiLSTM-max pooling encoder which is

pre-trained on the Stanford Natural Language In-
ference dataset (Bowman et al., 2015). Similar to
the previous model, this representation was passed
to a feed-forward network, albeit with two hidden
layers of sizes 1024 and 128 and sigmoid non-
linearities. We did not evaluate this model with
every set of embeddings due to time constraints
and disappointing initial results; evaluated on stan-
dard GloVe (840B) embeddings, the performance
of this model on the validation set was slightly
lower than the feed-forward network (NN) (when
utilizing the same vector-space model).

3.3 Discriminator

Our final submitted system (Discriminator), un-
like any of our other models, consisted of a sur-
prisingly simple set of rules which were designed
to leverage the information encoded in distribu-
tional semantic vector-space models (VSM) for
the purpose of classifying an attribute as discrim-
inative or non-discriminative. We relied on the
widely-used metric of cosine similarity; we mea-
sured the cosine similarities between the vector as-
signed to the pivot (word 1), comparison (word 2),
and feature (word 3) in a given VSM. Words not
found in the VSM were assigned the vector for the
UNK token. Our algorithm is summarized in Algo-
rithm 1.

Algorithm 1 Classification algorithm
1: procedure CLASSIFY(w)
S19 < SIM(wl, w9)
513 < SIM(wl, ’u)g)
S93 <— SIM (w2, w3)
if s13 —s93 > 0.015& s12 > 0.30& 513 >
0.1 & s93 < 0.54 then

6: return 1
7: else
8: return 0

These thresholds were obtained via grid-search
over both the training data and validation data,
per VSM. The range of evaluated thresholds was
between 0 and 0.50, with strides of 0.02. Be-
sides choice of VSM, these thresholds were the
only variable parameters in our model. The VSM
used in our final submission consisted of an av-
erage of three sets of embeddings: GloVe word
embeddings trained on Common Crawl (840B to-
kens) (Pennington et al., 2014), the same GloVe
embeddings post counter-fitting (Mrksi¢ et al.,
2016) using data from the training and valida-
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tion sets, and Paragramg;ggg9 embeddings provided
by Wieting et al. (2015), also post counter-fitting.
Counter-fitting is detailed in Section 4.2. The
VSM obtained by averaging these three models
(AvgVSM) outperformed each individual VSM,
and was therefore submitted as our official system.

4 Model Variations

4.1 Distributional Vector-Space models

In the course of our investigation we tested a large
number of vector-space models which were gen-
erated using different methods. All VSMs were
evaluated with each of our models and with our fi-
nal system in order to determine the model which
best encodes the discriminative information re-
quired for this task. Below is a description of all
VSMs we tried:

(a) Skipgram embeddings trained on the Google
News Corpus (Mikolov et al., 2013).

(b) Glove embeddings trained on Common
Crawl (6B and 840B tokens).

(c) LexVec embeddings trained on Common
Crawl (58B tokens) (Salle et al., 2016).

(d) Paragram embeddings trained on English
Wikipedia' and tuned on SimLex-999.

(e) Items (b) (840B), (c), and (d) counter-fitted
using the training and validation sets.

(f) AvgVSM: Average of three models cf. Sec-
tion 3.3.

4.2 Counter-fitting

Counter-fitting is a method of post-processing
VSMs to adapt them to certain linguistic con-
straints such as information from semantic lexi-
cons or ontologies. MrkSi¢ et al. (2016) for in-
stance, successfully used counter-fitting with se-
mantic lexicons to achieve a new state of the art
on the SimLex-999 similarity judgment dataset.

We employed counter-fitting to move pivot and
comparison vectors (from the training set)” closer
together in the vector-space for all training and
validation examples with label 1, under the ratio-
nale that pivot and comparison words should be
related for a feature to be considered discrimina-
tive.

"December 2, 2013 snapshot
>The lexicon used for counter fitting can be found at
https://github.com/rutrastone/discrimemb

4.3 kNN Averaging

In evaluating VSMs, we experimented with words
outside of the pivot, comparison, feature triples
that occurred in the data. For all three words,
we extracted the respective k-nearest neighbors
(k € {5,10,20}) and averaged their correspond-
ing vectors. This was motivated by the intu-
ition that it is not just the pivot, comparison pairs
that determine a discriminative feature distance
threshold, but also their general semantic neigh-
borhoods. As in the main approach, we computed
cosine difference thresholds via grid search for
a variety of term-neighborhood, neighborhood-
neighborhood combinations. Unfortunately, this
approach brought marginal improvements (when
tested on the validation set) at best under any con-
figuration of thresholds, models, etc. and was thus
discarded in favor of the much more lightweight
Discriminator model.

4.4 Hierarchical Vector-Space models

Poincaré embeddings (Nickel and Kiela, 2017)
are a new approach to learning representations
for datasets with a latent hierarchal structure.
By learning embeddings in hyperbolic spaces in-
stead of euclidean vector spaces using an al-
gorithm based on Riemannian optimization, this
method has been shown to outperform Euclidean
embeddings on datasets with latent hierarchies,
such as HYPERLEX (Véronis, 2004), a dataset
used to evaluate if semantic models can capture
hyponymy-hypernymy or lexical entailment rela-
tionships. This can be seen as closely related to
capturing concept attribute relationships, as is re-
quired in this task. We used two different sets:

e Size 50 embeddings, trained on the all Word-
Net common-noun hypernyms, provided by
Nickel and Kiela (2017)3;

e Size 50 embeddings trained on all feature
norm derived concept-attribute pairs (i.e. all
pivot-feature pairs when label is 1).

Since there was no overlap between the features
in the training and testing sets, this method was
not of immediate use for the task, as it could not
account for the features in the test set. Therefore,
our objective was solely to measure the embedding
method’s effectiveness in modeling the dataset’s

3https://github.com/TatsuyaShirakawa/poincare-
embedding
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VSM | NN(T) Dsc. (T) Dsc. (V)
Skipgram | 55.00 65.42 64.62
GloVe (6B) | 55.38 66.06 64.30
GloVe (840B) | 58.50 65.85 64.96
GloVe-cf (840B) | 57.74 64.82 63.47
LexVec | 59.66 65.98 64.71
LexVec-cf | 60.94 66.29 64.92
Paragramgjggg | 58.60 66.32 62.68
Paragramg;ggg9-cf | 57.80 57.86 62.27
Poincare (Wnet) | 51.71 53.56 51.78
Poincare (FN) | 57.22 62.29 56.91
AvgVSM | 58.63 67.01 68.21

Table 2: Performance of different Vector-space models
on the official test set (T) and the validation set (V).

concept-attribute relations. To achieve this, we
trained it on attribute concept pairs extracted from
the feature norms which were used to build the
task’s dataset (McRae et al., 2005; Krebs et al.,
2018). Since the use of feature norms was not
permitted in this shared task, the results from this
method were not submitted.

5 Results and Discussion

We report the performance of all vector-space
models for each classification system in Table 2.
The NN model is trained on the validation set*
and all results for both models are reported on
the official test set. Validation set results are only
reported for the Discriminator models as the NN
model fails to learn when training on the training
set and testing on the validation set.

5.1 Discriminator

Considering its simple architecture, our system’s
performance was remarkable. Using nothing but
cosine similarity, it performed on a level that is
well above our far more complex models, and
competitive with the task’s best performing sys-
tems. This is demonstrative of two things: a) the
information required to classify an attribute as dis-
criminative or not with respect to two concepts is
(to different extents) present in the distributional
vector-space models, and b) the concatenation of
the vectors associated with each word is not a suf-
ficient feature for our trained models to learn the
simple thresholds which our final model uses. We
hypothesize that this is because concatenation fails

“While larger, the training set is very noisy.

to account for the interactions between the pivot,
comparison, and feature. Further investigation is
needed to assert this.

5.2 Vector-space models

Examining the degree to which different VSM
could capture whether an attribute is discrimina-
tive was one of our main goals. Our initial in-
tuition was that the relationship between concept
and attribute is too specific to be adequately cap-
tured by distributional vector-space models which
are, after all, based only on co-occurrence. Our re-
sults, however, contradict this expectation, show-
ing that they are, to a certain extent, success-
ful. For Discriminator, the best performing vector-
space model was AvgVSM.

Furthermore, we found that counter-fitting us-
ing the training and validation sets did not prove
effective, leading to a degradation in performance,
with the exception of LexVec-cf when it did lead
to improvements and AvgVSM when it was aver-
aged with non-counter-fit models. Further investi-
gation is required to determine exactly under what
conditions counter-fitting works well.

Finally, we note that the WordNet-trained
Poincaré hierarchical vector-space model had low
coverage and performed poorly. However, the
model trained on feature norms showed promise,
particularly as it required far less space, training
time, and data in order to model the dataset when
compared to the distributional models.

6 Conclusion and Future work

In this paper we present Discriminator, our contri-
bution to SemEval 2018 Task 10: Capturing Dis-
criminative Attributes. Though this model is sim-
ple and does not require any training, our mini-
mally supervised thresholding system achieved a
score of 0.67, which was 0.08% below the top sub-
mitted system. We found the average of GloVe
(840B), GloVe counter-fitted, and Paragramg;ggg
counter-fitted vector-space models to achieve best
performance in our system, out of a set of 8 dif-
ferent models. Future work will explore leverag-
ing image-processing inspired models, given the
intuition that such methods have the ability to
capture attributes-concept relations. Preliminary
work with a 2D convolutional architecture, where
different sets of word embeddings serve as chan-
nels in the feature space, has shown promise.
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