
Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 963–967
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

ALB at SemEval-2018 Task 10:
A System for Capturing Discriminative Attributes

Bogdan Dumitru, Alina Maria Ciobanu, Liviu P. Dinu
Faculty of Mathematics and Computer Science, University of Bucharest

Human Language Technologies Research Center, University of Bucharest
bogdan27182@gmail.com,

alina.ciobanu@my.fmi.unibuc.ro, ldinu@fmi.unibuc.ro

Abstract

Semantic difference detection attempts to cap-
ture whether a word is a discriminative at-
tribute between two other words. For ex-
ample, the discriminative feature red charac-
terizes the first word from the (apple, ba-
nana) pair, but not the second. Modeling
semantic difference is essential for language
understanding systems, as it provides use-
ful information for identifying particular as-
pects of word senses. This paper describes
our system implementation (the ALB system
of the NLP@Unibuc team) for the 10th task
of the Semaval 2018 workshop, “Capturing
Discriminative Attributes”. We propose a
method for semantic difference detection that
uses an SVM classifier with features based
on co-occurrence counts and shallow semantic
parsing, achieving 0.63 F1 score in the compe-
tition.

1 Introduction and Related Work

Semantic similarity detection is a well-studied re-
search problem with numerous applications. State
of the art models are extremely capable, deter-
mining the degree of semantic similarity between
words with high accuracy.

However, looking the other way around, the se-
mantic difference between words has received sig-
nificantly less attention. As a result, one can argue
that a semantic similarity model without the capa-
bility of spotting the semantic difference as well
is not a complete system, and may not prove very
useful in practice.

Semantic difference is a ternary relation
(w1, w2, w3), where w1 and w2 are called concepts
and w3 is called discriminative feature. The dis-
criminative feature characterizes the first concept,
w1, but not the second one, w2. If the discrimina-
tive feature characterizes both w1 and w2 or none
of them, then we do not have semantic difference.

Semantic difference detection is a binary clas-
sification task where given a triplet of words, a
model needs to determine if a semantic difference
is present or not. As emphasized by Krebs and
Paperno (2016), this non-trivial task has numer-
ous applications, such as automatized lexicogra-
phy, conversational agents or machine translation.

Most research on discriminative features is re-
lated to computer vision (Farhadi et al., 2009; Rus-
sakovsky and Fei-Fei, 2012), as these attributes
proved to be very useful in interpreting visual data
(Huang et al., 2016), being able to link visual fea-
tures and semantic labels (Guo et al., 2015). A
recent study on this topic belongs to Lazaridou
et al. (2016), who proposed a method for iden-
tifying discriminative attributes when given word
pairs and their visual representations.

In this paper, we describe a system for semantic
difference detection that outputs a set of features
for every triplet in the input data, based on prepro-
cessed external resources (the English Wikipedia
database). Further, these features are used to train
an SVM for binary classification. The current fea-
ture selection allows even a direct approach such
as evaluating the following inequation:

|F1|∑

i=1

fi −
|F2|∑

i=1

fi > 0 (1)

to obtain similar results as the SVM. Here, F1 and
F2 are values of the same features, extracted for
(w1, w3) and (w2, w3), respectively.

Our model uses two different classes of fea-
tures. The first class is generated using simple
co-occurrence counts and the second class is gen-
erated by an arc-factored approach (McDonald
et al., 2005) for semantic dependency parsing.

Semantic dependency parsing aims to provide a
shallow semantic analysis of the text. As distinct

963

from deeper semantic analysis, shallow seman-
tic parsing captures relationships between pairs of
words or concepts in a sentence (Thomson et al.,
2014).

2 Dataset and Preprocessing

The input data (training, validation and testing)
is translated into an intermediary configuration as
described below.

Each word triplet from the input data is split
into two word pairs: (w1, w3) and (w2, w3). The
initial part of our model extracts features for each
pair, and in the last steps, where the performance is
computed, a cross-reference is done with the orig-
inal input database.

We use the English Wikipedia as an external
data source for feature extraction. We convert the
raw Wikipedia database to plain text and concate-
nate the sentences of all the articles in a large text
corpus.

3 System Framework

In this section we present our approach and
methodology for capturing discriminative at-
tributes.

3.1 Problem Reduction

First, we transform the problem of semantic dif-
ference detection into a simpler one: detecting if
a feature characterizes a concept. Every ternary
relation in the input data is split into two subprob-
lems of detecting if a feature (i.e. w3) character-
izes w1 and w2, respectively. Solving subproblems
independently gives us more flexibility in feature
extraction.

Determining the validity of the ternary relation
from the outputs of the newly created binary rela-
tions is achieved with the following equation:

o = ¬(p =⇒ q) (2)

which for convenience can be rewritten as:

o = p ∧ ¬q (3)

where p = C(w1, w3), q = C(w2, w3), o is the
triplet label and C(wa, wb) is the model or func-
tion that decides if wb characterizes wa.

3.2 Features
We use two categories of features in training our
system: co-occurrence and POS-tag features. Fea-
tures from both categories are extracted from En-
glish Wikipedia sentences.

3.2.1 Co-occurrence
This is a measure of occurrence of two words in
a text alongside each other and in a specific order.
For our system, we consider the two words as an
unordered pair and count accordingly. For every
pair of words (w1, w2) we extract the following
features:

• Co-occurrence1: counts the number of adja-
cent occurrences of w1 and w2 disregarding
the order.

• Co-occurrence2: counts the number of occur-
rences of both w1 and w2 in a text window of
size 2.

• Co-occurrence3: counts the number of occur-
rences of both w1 and w2 in a text window of
size 3.

If two words occur in the same sentence, it pro-
vides the intuition that there should be a relation
between the distance d = |w1 − w2| and their se-
mantic relation. This is what we attempt to cap-
ture with the features described above. We drop
co-occurrence2 and co-occurrence3 in our final
system configuration, since they do not add any
contribution to the final score, as shown in Table 2.

Figure 1: Syntactic dependency tree.

3.2.2 POS-tag Features
Every sentence that contains a pair of words
(w1, w2) is parsed and tagged. Based on a statis-
tical model, a prediction is made of which tag ap-
plies to each word. Next, a syntactic dependency
tree is built as shown in Figure 1 and used to derive
various rules that are used to extract POS-related
features.

964

For every sentence containing both words of the
pair, if a rule Ri hits, then we increment the total
hit count Hc of that specific pair. |R| represents
the total number of rules to be applied and Hc is
defined by the following formula:

Hc =

|R|∑

i=1

Ri(w1, w2) (4)

As an example, if we take the pair of words
(w1 = moth, w2 = flies), we obtain the follow-
ing values: 1,088 co-occurrence1 and a count of
763 hits of the rules on sentences containing both
words. Hence the pair (moth, flies) has feature val-
ues (1,088, 763). Several more examples are pre-
sented in Table 1.

w1, w2 co-occurrence1 Hc

desk, drawers 169 120
cod, honks 0 0
shirt, sleeves 450 1,109
tie, sleeves 16 13
lime, holes 0 3
cheese, holes 29 20

Table 1: Examples of word pairs and feature values.

3.3 Rules

We perform rules implementation in a purely
heuristic manner, using methods from previous re-
search (Kübler et al., 2009). While we keep rules
composition simple, they turn out to be very pow-
erful and we use only two of them in the final sys-
tem implementation. Rules are prone to both false
positives and false negatives, but provided enough
input sentences, both errors tend to be minimized.

• Rule1: if w2 is the root of an arc in the pars-
ing tree and w1 is one of its children and no
negation is present in the children list, then
the rule will return a hit.

• Rule2: if the child of a root noun is a verb,
then recursively the children of the verb will
be considered related to the noun and the
pairs (root noun, verb child) will be com-
pared with (w1, w2), increasing the hit count
if the pairs match.

3.4 Linear SVM

For classification we use a linear SVM (Vapnik,
1995). The output of the SVM is given by the
equation:

u = wx− b (5)

where w is the normal vector to the hyperplane and
x represents the input data.

In the linear case, the margin is defined as the
distance between the closest positive and negative
example, and the hyperplane defined by the above
equation (see Figure 2). Maximizing the margin
can be approached as an optimization problem:

Minimize 1
2‖w‖

2 subject to yi(wxi−b) ≥ 1,∀i;

where xi is the ith training sample and yi is the
correct classification of the sample.

Figure 2: Linear SVM.

3.5 System Workflow

Until now we have described all the building
blocks of our system. Now we chain them to-
gether.

The first step is to transform the original
datasets into datasets of pairs. For all training, val-
idation and testing data we run Algorithm 1. After
this step, we end up with a dataset containing the
features of all pairs, of all three datasets.

The next step is to train and validate the SVM
on the datasets of triplets. The last step is to use
the trained SVM to predict labels for the triplets in

965

for every dataset do
transform data into pairs of words;
for every pair of words do

extract all sentences from Wikipedia
containing w1 and w2;
extract co-occurrence features;
for every sentence do

run active rules;
end
compute Hc using active rules;

end
end

Algorithm 1: Dataset preparation.

the test dataset. A slightly different approach that
we try is to train the SVM on pairs extracted from
triplets with label 1, and then apply Equation 2 to
obtain the labels for the initial test dataset triplets.

In another system configuration, we eliminate
the SVM and compute the final triplet score from
the existing features using Equation 1. By doing
so, we eliminate the training and validation steps,
thus transforming our system from a learning one
to a purely deterministic one. However, if the
number of features is increased, such an approach
may prove unfeasible and inefficient.

4 Results

We have implemented several system configura-
tions by selecting different rules, features and
learning methods. We have chosen three config-
urations: two of them produced the top results in
our experiments on the development dataset, and
the other had the peculiarity of not having a learn-
ing mechanism. The performance of these systems
on the development dataset is reported in Table 2.
The systems are evaluated using the F1 score.

The first system, ALB, uses only the first
co-occurrence score, along with Hc. Even if only
two features per pair of words are used, this sys-
tem configuration produced the best F1 score of
0.69. This is the only system that we submitted
for evaluation, obtaining 0.63 F1 score on the test
dataset.

The second system, ALB+, uses all three
co-occurrence scores as features and treats rules
output as separate features. Both ALB and ALB+
use the SVM trained on triplets.

The third system, EQ1, uses the same two fea-
tures as ALB and replaces the SVM component

with Equation 1. This system obtained the lowest
F1 score, but not too distant from the others.

It is interesting to mention that if we use only
co-occurrence1 as a discriminant, the score is
> 0.6. Analyzing the output of our best system,
we observe that the errors it produces are not bi-
ased towards one of the labels (417 errors for
label 0 and 430 for label 1).

System F1 Score
ALB 0.69
ALB+ 0.67
EQ1 0.62

Table 2: Results for capturing discriminative attributes
on the validation dataset.

5 Conclusions

In this paper we have presented our results and
system description for Task 10 of SemEval 2018,
“Capturing Discriminative Attributes”.

Our approach shows promising results in using
the relation between words in context for seman-
tic differences. The obtained results are compet-
itive, although being outperformed by other ap-
proaches in the official ranking. There is enough
room for improvements and at least two possible
approaches are already being analyzed.

The first one is straightforward: extending the
feature set with at least one order of magnitude
compared with ALB+, and if necessary replacing
the SVM with a fully connected neural network.
The heavily used sequence-to-sequence model can
also be applied on sentences to automatically cap-
ture relations between word pairs.

The second possible approach is to use a neural
network to automatically infer rules. Next, we can
apply generated rules to compute Hc and assign a
semantic difference probability to every pair in our
dataset. We can use a pruned version of the train-
ing dataset from this task, extract word pairs in the
same manner as we did in our system implementa-
tion and feed word pairs along with sentences and
labels to a convolutional neural network.

6 Acknowledgments

Research supported by UEFISCDI, project num-
ber 53BG/2016.

966

References
Ali Farhadi, Ian Endres, Derek Hoiem, and David A.

Forsyth. 2009. Describing Objects by Their At-
tributes. In Proceedings of the Conference on Com-
puter Vision and Pattern Recognition, pages 1778–
1785.

Yuchen Guo, Guiguang Ding, Xiaoming Jin, and Jian-
min Wang. 2015. Learning Predictable and Discrim-
inative Attributes for Visual Recognition. In Pro-
ceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence, pages 3783–3789.

Chen Huang, Chen Change Loy, and Xiaoou Tang.
2016. Unsupervised Learning of Discriminative At-
tributes and Visual Representations. In Proceedings
of the Conference on Computer Vision and Pattern
Recognition, pages 5175–5184.

Alicia Krebs and Denis Paperno. 2016. Capturing
Discriminative Attributes in a Distributional Space:
Task Proposal. In Proceedings of the 1st Work-
shop on Evaluating Vector-Space Representations
for NLP, pages 51–54.

Sandra Kübler, Ryan McDonald, and Joakim Nivre.
2009. Dependency Parsing. Morgan and Claypool
Publishers.

Angeliki Lazaridou, Nghia The Pham, and Marco Ba-
roni. 2016. “The red one!”: On Learning to Refer
to Things Based on Discriminative Properties. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 213–218.

Ryan McDonald, Koby Crammer, and Fernando
Pereira. 2005. Online Large-margin Training of De-
pendency Parsers. In Proceedings of the 43rd An-
nual Meeting on Association for Computational Lin-
guistics, pages 91–98.

Olga Russakovsky and Li Fei-Fei. 2012. Attribute
Learning in Large-Scale Datasets. In Trends and
Topics in Computer Vision, pages 1–14. Springer
Berlin Heidelberg.

Sam Thomson, Brendan O’Connor, Jeffrey Flani-
gan, David Bamman, Jesse Dodge, Swabha
Swayamdipta, Nathan Schneider, Chris Dyer, and
Noah A Smith. 2014. CMU: Arc-Factored, Discrim-
inative Semantic Dependency Parsing. In Proceed-
ings of the 8th International Workshop on Semantic
Evaluation (SemEval 2014), pages 176–180.

Vladimir Vapnik. 1995. The Nature of Statistical
Learning Theory. Springer-Verlag New York.

967

