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Abstract

Hypernym discovery aims to discover the hy-
pernym word sets given a hyponym word and
proper corpus. This paper proposes a simple
but effective method for the discovery of hy-
pernym sets based on word embedding, which
can be used to measure the contextual simi-
larities between words. Given a test hyponym
word, we get its hypernym lists by comput-
ing the similarities between the hyponym word
and words in the training data, and fill the test
word’s hypernym lists with the hypernym list
in the training set of the nearest similarity dis-
tance to the test word. In SemEval 2018 task9,
our results, achieve lst on Spanish, 2nd on
Italian, 6th on English in the metric of MAP.

1 Introduction

Hypernymy relationship plays a critical role in
language understanding because it enables gener-
alization, which lies at the core of human cogni-
tion (Yu et al. (2015)). It has been widely used
in various NLP applications (Espinosa Anke et al.
(2016)), from word sense disambiguation (Agirre
etal. (2014)) to information retrieval (Varelas et al.
(2005)) , question answering (Prager (2006)) and
textual entailment (Glickman et al. (2005)). To
date, the hypernymy relation also plays an impor-
tant role in Knowledge Base Construction task.

In the past SemEval contest (SemEval-2015
task 17!, SemEval-2016 task 13?), the “Hypernym
Detection” task was treated as a classfication task,
i.e., given a (hyponym, hypernym) pair, deciding
whether the pair is a true hypernymic relation or
not. This has led to criticisms regarding its over-
simplification (Levy et al., 2015). In the SemEval
2018 Task 9 (Camacho-Collados et al., 2018), the
task has shifted to “Hypernym Discovery” , i.e.,

Uhttp://alt.qcri.org/semeval2015/task 17/
*http://alt.qcri.org/semeval2016/task 13/

909

Luo Si
Alibaba Group, China
luo.si@alibaba-inc.com

given the search space of a domain’s vocabulary
and an input hyponym, discover its best (set of)
candidate hypernyms.

In this paper, the content is organized as fol-
lows: Section 2 gives an introduction to the re-
lated work; Section 3 describes our methods for
this task, including word embedding projection
learning as the baseline and the nearest-neighbour-
based method as the submission result; The exper-
imental results are presented in Section 4. We con-
clude the paper with Section 5.

2 Related Work

The work of identifying hypernymy relationship
can be categorized from different aspects accord-
ing to the learning methods and the task formuliza-
tion. The earlier work (Hearst (1992)) formalized
the task as an unsupervised hypernym discovery
task, i.e., none hyponym-hypernyms pairs (z,y)
are given as the training data. Hearst (1992) hand-
crafted a set of lexico-syntactic paths that connect
the joint occurrences of x and y which indicate
hypernymy in a large corpus. Snow et al. (2004)
trained a logistic regression classifier using all de-
pendency paths which connect a small number of
known hyponym-hypernym pairs. Paths that were
assigned high weights by the classifier are used to
extract unseen hypernym pairs from a new corpus.
Variations of Snow et al. (2004) were later used in
tasks such as taxonomy construction (Snow et al.
(2006); Kozareva and Hovy (2010); Carlson et al.
(2010)), analogy identification (Turney (2006)),
and definition extraction (Borg et al. (2009); Nav-
igli and Velardi (2010)).

A major limitation in relying on lexico-
syntactic paths is the requirement of the cooc-
curence of the hypernym pairs. Distributional
methods are developed to overcome this limita-
tion. Lin (1998) developed symmetric similarity
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measures to detect hypernym in an unsupervised
manner. Weeds and Weir (2003); Kotlerman et al.
(2010) employed directional measures based on
the distributional inclusion hypothesis. More re-
cent work (Santus et al. (2014); Rimell (2014)) in-
troduces new measures, based on the distributional
informativeness hypothesis. Yu et al. (2015); Tuan
and Ng (2016); Nguyen et al. (2017) learn directly
the word embeddings which are optimized for cap-
turing the hypernymy relationship.

The supervised methods include Baroni and
Lenci (2011); Roller et al. (2014); Weeds and Weir
(2003). These methods were originally word-
count-based, but can be easily adapted using word
embeddings (Mikolov et al. (2013a); Pennington
et al. (2014)). However, it was criticized that the
supervised methods only learn prototypical hyper-
nymy (Levy et al. (2015)).

3 Hyponym-hypernym Discovery
method

3.1 Preprocessing

For the corpus and the train/gold/test data, we
have two preprocessing steps: 1) Lowercase all
the words; 2) Concatenate the phrases (hyponym
or hypernym composed with more than one word)
which occur in the training set or the test set with
underline, i.e., “executive president” is replaced
by “executive_president”. It is quite useful for
training word embedding models because we want
to treat phrases as single words.

If there are multiple phrases in one sentence, we
generate multiple sentences, one per phrase. For
example, “executive president” and “vice execu-
tive president” both exist in the corpus sentence
“Hoang Van Dung , vice executive president of
the Vietnam Chamber of Commerce and Indus-
try.”. After preprocessing, two more sentences are
generated and included in the training corpus for
word embeddings:

e Hoang Van Dung , vice executive_president
of the Vietnam Chamber of Commerce and
Industry.

e Hoang Van Dung , vice_ executive_president
of the Vietnam Chamber of Commerce and
Industry.

The size of the original corpus has increased after
the preprocessing step, e.g., The English corpus
has increased from ~18G to ~32G.
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3.2 Word Embedding

We train our word embedding models using the
Google word2vec (Mikolov et al. (2013a,b)) tool®
on the preprocessed corpus. We employ the skip-
gram model since the skip-gram model is shown
to perform best in identifying semantic relations
among words. The trained word embeddings
are used in the projection learning and nearest-
neighbour based method.

3.3 Method based on Projection Learning

The intuition of this method is to assume that there
is a linear transformation in the embedding space
which maps hyponyms to their correspondent hy-
pernyms. We first learn a projection matrix from
the training data, then apply the matrix to the test
data. Our method is similar to that described in Fu
et al. (2014), the main idea can be summarized as
follows:

1. Give a word z and its hypernym y, assum-
ing there exists a linear projection matrix ®
to meet y = ®x. We need to learn a approxi-
mate ® using the following equation to mini-
mize the MSE loss:

* 1 2
d :argqunN(Z)H@x—yH (1)
I?y

2. Learn the piecewise linear projection by clus-
tering the training data into different groups
according to the vector offsets. The motiva-
tion for the clustering is two-fold: firstly, the
hypernym-hyponym relation is diverse, e.g.,
offset from “carpenter” and “laborer” is dis-
tant from the one from “gold fish” to “fish”;
Secondly, if a hyponym x has many hyper-
nyms (or hierarchical hypernyms), we can’t
use a single transition matrix ¢ to project
to different hypernym y. So a piecewise pro-
jection learning is needed in each individual
group. Thus, the optimization goal can be
formalized as follows:

¢ = argmin A Z | @z — yl|?
>, k
(z,y€Ck)
2)

Where N is the number of word pairs in the
kth cluster Cy,.

*https://code.google.com/archive/p/word2vec/



3. Learn the threshold d;, for each cluster, by as-
summing that positive (hyponmy-hypernmy)
pairs can locate in radius ¢ while negative
pairs can not:

d( Pz —y) = |Prz —ylI> <% 3)

Where d stands for the euclidean distance.

Once the piecewise projection and the thresh-
old is learned, given a new hyponym =z, all
of the hypernym candidates ys from the vo-
cabulary are paired with x. The pairs are as-
signed to the proper cluster by the vector off-
set (y-x). According to the threshold § in that
group, it can be decided whether (z, y) is a
reasonable hyponym-hypernym pair.

3.4 Method Based on Nearest Neighbors

We noticed that the hypernyms are often very dis-
tant from the correspondent hyponyms in the em-
bedding space. Meanwhile, hyponyms which are
close to each other often share the same hyper-
nyms. We propose a simple yet effective approach
based on this observation.

Suppose the training set H consists of a number
of hyponyms and their correspondent hypernyms

H : {Hypo® : Hyper?...Hypert}

During the test time, for an unseen hyponym x, the
top K nearest hyponyms in the training set , i.e.,
Hypo; are found, and their hypernyms are used
as the output, i.e., the hypernyms of . The found
hypernyms are sorted according to the distance be-
tween x and Hypo;. This can be formalized as
follows:

HypoN = [Hypo,].sort_by(distance(Hypo,, x))
Hyper(z) = [Hyper(w)|w in HypoN]

where the distance function measures the simi-
larity between Hypo; and x, HypoN is the list
of words from the training set sorted according to
their distances to z. Consine similarity in the em-
bedding space is used for the distance function in
our setup. According to the requirements of Task
9, only the top 15 of Hyper(x) are submitted for
evaluation.

4 Evaluation

4.1 Experimental Setup

Word2vec is used to produce the word embed-
dings. The skip-gram model (-cbow 0) is used
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with the embedding dimension set to 300 (-size
300). The other options are by default. We use 10-
fold cross validation to evaluate both methods on
the provided training data. The results are shown
in Table 1 #

4.2 Results Based on Projection Learning

For the projection learning method, we fol-
lowed experimental settings described in Fu et al.
(2014).The negative (hyponym, hypernym) pairs
are randomly sampled from the vocabulary. The
training set consists of the negative pairs and the
positive pairs in 3:1 ratio.

By using the same evaluating metrics as PRF
in the cited paper, our best F-value on the valida-
tion set is 0.68 (the paper result is 0.73) when the
best cluster number is 2 and the threshold is (17.7,
17.3). We apply the learned projection matrices
and thresholds on the validation data, extract out
the candidate hypernyms from the given vocabu-
lary and truncate the top 15 candidates by sorting
them according to the d(®jx,y)/dx scores. The
generated results are not very promising, see Ta-
ble 1 for details.

This projection learning method performs not
very well on task9, we think the most probable
reason is that in Fu et al. (2014), the problem is
formalized as a classification problem, in which
the (hyponym, hypernym) pairs are given. How-
ever, our task is formalized as a hypernym dis-
covery problem given only hyponmys. This task
might be inherently much harder than the classifi-
cation task; a second reason might be related to the
relative small amount of training data, i.e., ~7500
training pairs in total.

4.3 Results Based on NN

The results are shown in Table 1 from row 2 to
row 5. Table 2 shows the results evaluated on the
test data. The performance evaluated using either
cross validation or the test data is much worse than
that of a typical hypernym prediction task reported
by Weeds and Weir (2003). This illustrates that
hypernym discovery is indeed a much harder task
than the hypernym prediction task.

Although the method proposed by us is quite
simple, our submissions are the 1st on Spanish, the
2nd on Italian, the 6th on English, ranked by the

“The PL based method is not evaluated on Italian or Span-
ish corpus due to its poor performance on English corpus.
The result of PL method is not submitted for the task evalua-
tion either.



System | Language MAP

MRR

P@l1 P@3 P@5 P@15

PL

NN
NN
NN

English
English
Spanish

Italian

2.8
13.3
16.6
19.3

7.6
25.1
27.2
324

33
13.9
17.2
19.8

2.6
13.5
16.4
18.6

2.0
12.5
16.1
18.6

7.5
18.7
19.0

25

Table 1:

Cross validation results of the two methods on training set(%). PL stands for the projection-learning

based system. NN stands for the nearest-neighbor based method.

Language | MAP MRR

P@1

P@3 P@5S P@15

English
Spanish
Italian

9.37 17.29
20.04 28.27
11.37 19.19

2

13.1

10.14
20.95
12.08

9.19
20.39
11.23

8.78
19.38
10.9

12
1.4

Table 2: Results on the test data for our submissions(%).

metric of MAP. This proves the effectiveness of
the method.

Compared with the results got by cross valida-
tion, the performance evaluated on the test data
(Table 2) dropped significantly on English (MAP
dropped by 4%) and Italian (MAP dropped by
8%), but increased by a margin on Spanish (MAP
increased by 3.6%). We consider that it is due
to the properties of provided data , i.e., the hy-
pernyms in the test set are similar to those in the
training set for Spanish, but dissimilar for English
or Italian.

The performance drop for English and Italian
exposes one of the main drawbacks of our method:
the method can not discover the hypernyms that
have never occurred in the training set. To over-
come this shortcoming, using syntactic patterns to
extract hyponym-hypernym with high confidence
can be employed to enlarge the training set. We
leave this to the future work.

5 Conclusion

In this paper we describe two methods we have
tried out for the hypernym discovery task in Se-
mEval 2018. We extended the method originally
proposed for hypernym prediction by Fu et al.
(2014) as a baseline system. However the per-
formance of this method is poor. The nearest-
neighbor-based method is relatively simple, yet
quite effective. We analyzed the experimental re-
sults, reveal some shortcomings, and propose a po-
tential extension to future improvement.
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