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Abstract

The four sub-tasks of SecureNLP build to-
wards a capability for quickly highlighting
critical information from malware reports,
such as the specific actions taken by a mal-
ware sample. Digital Operatives (DO) sub-
mitted to sub-tasks 1 and 2, using standard
text analysis technology (text classification for
sub-task 1, and a CRF for sub-task 2). Perfor-
mance is broadly competitive with other sub-
mitted systems on sub-task 1 and weak on sub-
task 2. The annotation guidelines for the in-
termediate sub-tasks create a linkage to the fi-
nal task, which is both an annotation challenge
and a potentially useful feature of the task. The
methods DO chose do not attempt to make use
of this linkage, which may be a missed oppor-
tunity. This motivates a post-hoc error analy-
sis. It appears that the annotation task is very
hard, and that in some cases both deep con-
ceptual knowledge and substantial surround-
ing context are needed in order to correctly
classify sentences.

1 Introduction

The SecureNLP challenge is motivated by (Lim
etal., 2017) and further described in (Phandi et al.,
2018), it aims to provide automation for malware
analysts who might otherwise be overwhelmed by
the task of finding key data in long threat reports.
The annotation guidelines used to create the task
ask analysts to include actions carried out by the
malware, but exclude actions carried out by the hu-
man designers of the malware. These actions are
related to the MAEC cybersecurity ontology (Kir-
illov et al., 2010). The guidelines include one sub-
stantial caveat:

As a general guide [for a positive an-
notation], the sentence should imply a
particular malware action or capability,
with reference to the list of attribute la-
bels. [i.e. the MAEC labels]
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Sub-task 1 calls for a determination of relevance or
irrelevance to malware activity on a per-sentence
basis. However a number of issues make this diffi-
cult. See detail in (Lim et al., 2017). First, it is not
obvious what to do when a sentence describes mal-
ware activity but does not fit in with any MAEC
category. Second, the distinction between things
done by the malware and things done (or intended)
by its designers is not easy to maintain.

We describe the systems that we built for tasks
1 and 2 and use them to conduct ablation studies
and error analyses.

2 Digital Operatives Systems

The Digital Operatives submission used
spaCy (Honnibal and Johnson, 2015). to
generate features for each token, then aggregated
the features from the whole sentence. To estimate
performance, we used 5-fold cross-validation on
the combined training and development sets.

As an example, consider the word ”ago” in the
sentence:

”A few days ago we detected a watering hole
campaign in a website owned by one big industrial
company .”

We extract:

e the word itself
the lemmatized form provided by spaCy,

the orthographic shape (all lower case, repre-
sented as ”xxx”

the part-of-speech ("ADV™)
the detailed part-of-speech ("RB”)
Brown cluster (6442) (Brown et al., 1992)

the fact that it does or does not look like a
URL
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e the bigrams in which it participates (’days
ago” and “ago we”)

e similar bigrams for lemma, Brown cluster
and shape.

e extract features from dependency links. Each
token has a head from which it depends, and
the relation that it holds to the head has a
name. The head of “ago” is the verb “de-
tected”, and the relation is "advmod”. We
package this up into the feature detected-
ADVMOD-ago.

e features of the form X-advmod-Y where X
and Y are either both cluster ids or both or-
thographic shapes.

The result is passed to a passive aggressive
classifier (Crammer et al., 2006)'. This learner,
which is similar in cost and performance to a lin-
ear kernel SVM and to a number of other linear
classifiers, seems to be close to the best choice
from a large number of experiments. Grid search
was used to choose the C regularization parame-
ter for the classifier. On our 5 validation splits this
method had a mean f1 of 0.60 with standard de-
viation 0.045. Performance on the actual test set
was lower, at 0.52. This was rank 5 among the 11
submitted systems, well behind the top 2 systems
and slightly ahead of the organizers’ benchmark.

Our system classifies each sentence in isolation.
No attempt was made to establish the referents of
pronouns.

For sub-task 2 we used CRFsuite (Okazaki,
2007) to implement a linear-chain conditional ran-
dom field. Per-word features were: the lower-
cased word and its part-of-speech tag; a two-letter
prefix of the word; two- and three-letter character
prefixes of the word; shape indicators for whether
the word is numeric, title-case or upper-case; indi-
cators for whether the word is beginning or end of
sentence; the nltk part of speech of previous and
subsequent words, if present; the shape indicators
of previous and subsequent words, if present. We
would have preferred to use features from spaCly,
as in task 1, but did not overcome tokenization dif-
ferences in time. This system was not competitive,
with an F-score of 0.16 and a ranking of 9th. The
best system had an F1 score of 0.39.

"In scikit-learn’s implementation (Pedregosa et al.,
2011)

precision | recall | fl-score | sup

irrelevant 0.96 0.83 0.89 528
relevant 0.44 0.79 0.57 90

avg / total 0.88 0.83 0.84 618

Table 1: Fl-scores using only lemmas and dependen-
cies between lemmas.

2.1 Ablation study

The submitted system used all the features gener-
ated by spaCy. We augmented this with ablation
studies in which only subsets of the features were
used. The best performance came using only un-
igrams and bigrams derived from lemmas, along
with dependency features derived from lemmas.
Ablation actually improved performance over the
submission, as shown in table 1. Presumably,
these features give the sparse linear classifier an
appropriate level of generality. There are 89 false
positives in the complete test set and 19 false neg-
atives. There are only 71 true positives.

3 Task analysis

MAEC labels classify malware along several di-
mensions. We focus on a tractable subset that can
be assigned to Actions and that describe capa-
bilities of malware. Table 2 lists these labels.

3.1 Error analysis

We carried out our own annotation of the 112 ex-
amples from the test set for which our system did
not agree with the organizers annotations. To these
we added a further 111 randomly chosen examples
from the test set, for which our system did agree.
We assessed each of these examples against the 20
categories from table 2, There were differences of
judgment between our annotations and those of the
organizers. Potential reasons for this include sim-
ple errors, misunderstandings, and consequences
of the linkage between sub-task 1 and sub-task 4.

Table 4 shows performance when using the new
annotations. There are now 72 false positives in
the complete test set and 13 false negatives. True
positives now slightly outnumber false positives,
at 88. It is of course possible that some of our
annotations are unintentionally biased in our fa-
vor. See table 3. In future work, it may be benefi-
cial to apply the crowdsourcing methods and care-
ful evaluation of annotation found in, for example,
(Snow et al., 2008).
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Number | Capability Example Frequency
000 anti-behavioral_analysis avoid detection and frustrate analysis, 36
001 anti-code_analysis XOR 0xAA applied on top of it, 36
002 anti-detection making its open ports invisible to scan- 240
ners.
003 anti-removal block access to where the rootkit keeps its 5
file
004 availability_violation DDoS attacks were launched 28
005 command_and_control C & C proxies talk to [other] proxies 580
006 data_exfiltration exfiltrate data back to the C&C server 189
007 data_theft extract Internet Explorer passwords 186
008 destruction collects file names and overwrites them 63
009 fraud smart meters could be manipulated 7
010 infection/propagation infected via a multi-stage attack 525
011 integrity_violation attacker can hijack the network 85
012 machine_access/control control the keyboard and mouse. 245
013 persistence the malware creates a registry key 57
014 privilege_escalation achieve admin privileges 23
015 probing malware checks if an old versn is installed 77
016 remote_machine_manipulation | the malware will access network shares 13
017 secondary_operation The dropper installs a second file 280
018 security_degradation bypass User Account Control (UAC) 33
019 spying Babar is able to sniff all keystrokes 128

Table 2: Malware capability labels. Note that the frequency distribution is highly skewed. Examples are edited to
fit.

Example DO | SN
A screenshot of the desktop is saved into the 0 1
C:\\ProgrambData\\Mail\\MailAg\\scs. jpg
file .

As you can see this powershell script simply extracts an- | 0 1
other VBScript and executes it .’,
Cozyduke was used throughout these attacks to harvestand | 1 0
exfiltrate sensitive information to the attackers .
Cozyduke will periodically contact these websites to re- | 0 1
trieve task information to be executed on the local machine

MAEC
spying?

exfiltration

C&C

Execute contents in unlabeled textbox1 as a SQL query and | 0 1 exfiltration
return binary data to adversary.
The malware hides behind numerous layers of encryption | 1 0
and obfuscation and is capable of quietly stealing and ex-
filtrating sensitive information such as email from the vic-
tim’s computer

To communicate with the C&C - server , the Trojan makes | 1 0 c&e
use of asymmetric encryption with a hardcoded pair of pri-

vate and public keys .

anti-detection,data_theft

Table 3: Sample annotation disagreements. The column labeled DO reflects our classification, SN represents that
given by the SecureNLP organizers. The column labeled MAEC gives detail on the capability that DO thinks is
being described. When we feel confident that one of the annotations for a sentence is clearly right, it is shown in
bold. If not, neither is bold.
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P R F1 | sup

irrelevant | 0.97 | 0.86 | 0.91 | 517
relevant | 0.55 | 0.87 | 0.67 | 101
avg /total | 0.90 | 0.86 | 0.87 | 618

Table 4: Performance against DO’s (possibly uninten-
tionally biased) annotations.

4 Discussion and conclusions

We suspected that the secure NLP task is difficult
(Lim et al., 2017). Results bear this out:

e QOur post-hoc annotation study suggests that
it is indeed difficult to distinguish between
things done by attackers and things done by
malware.

Often, the system described is distributed,
consisting of downloaded malware, websites
and C&C servers. The MAEC classification
and the SecureNLP annotation guidelines
emphasize measurable properties of malware
samples. This puts tension into the annota-
tion scheme and may well be a contributor to
annotation errors.

A more extensive effort using multiple anno-
tators and reformulated guidelines could be
beneficial.

With the technology that we used, analysts
relying on the classifier’s judgment as a filter
will still need to read approximately double
the number of sentences that actually contain
relevant information, and will miss 10% to
20% of the relevant material, which the clas-
sifier regards as irrelevant.
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