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Abstract

We describe two systems for semantic relation
classification with which we participated in the
SemEval 2018 Task 7, subtask 1 on seman-
tic relation classification: an SVM model and
a CNN model. Both models combine dense
pretrained word2vec features and hancrafted
sparse features. For training the models, we
combine the two datasets provided for the sub-
tasks in order to balance the under-represented
classes. The SVM model performed better
than CNN, achieving an F1-macro score of
69.98% on subtask 1.1 and 75.69% on subtask
1.2. The system ranked 7th among 28 submis-
sions on subtask 1.1 and 7th among 20 sub-
missions on subtask 1.2.

1 Introduction

Relation extraction is a traditional information ex-
traction task which aims at detecting and classi-
fying semantic relations between entities in text
(Pawar et al., 2017). The task essentially induces
structure from unstructured textual information,
allowing us to obtain valuable information about
the way in which entities interact, thus improv-
ing human capacity to analyze (often large) quan-
tities of textual data. Relation extraction is typi-
cally framed as a classification task: pairs of en-
tities from a document are inspected and the type
of relation is predicted by means of local linguistic
cues (Culotta et al., 2006).

Relation extraction has been extensively stud-
ied in the literature; see (Konstantinova, 2014) for
a comprehensive overview. Etzioni et al. (2008)
group the relation extraction approaches into three
classes: (1) knowledge-based methods, (2) super-
vised methods, and (3) self-supervised methods.
Traditional approaches mostly relied on shallow
machine learning models with handcrafted fea-
tures (GuoDong et al., 2005) and specific kernel
methods (Zelenko et al., 2003). Some systems

leverage unlabeled data to improve classification
and use semi-supervised or unsupervised learning
(Chen et al., 2006; Hasegawa et al., 2004). The
current state of the art is a deep recurrent neu-
ral network model by Xu et al. (2016). Most re-
search on relation extraction has leveraged stan-
dard benchmark datasets from the ACE (Dodding-
ton et al.) and SemEval-2010 Task 8 (Hendrickx
et al., 2009).

This paper describes the systems with which
we participated in the SemEval 2018 task 7 on
Semantic relation extraction and classification in
scientific papers. We focused on the subtask 1
(relation classification), which featured two sce-
narios: 1.1 Relation classification on clean (i.e.,
manually annotated) data and 1.2 Relation clas-
sification on noisy (i.e., automatically annotated)
data. Both scenarios start out with pre-extracted
entity pairs, which makes the task simpler than re-
lation extraction proper. On the other hand, the
task remains challenging because of the choice of
the domain: scientific publications abound with
complex syntactic structures and rely on special-
ist terminology, which makes it more difficult to
predict the correct relation type. We framed the
problem as a supervised classification task and
devised two models: a support vector machine
(SVM) model, which utilizes a rich set of fea-
tures combining dense pretrained word2vec fea-
tures and handcrafted sparse features, and a con-
volutional neural network (CNN) model. The best
result was achieved with the SVM model, which
ranked 7th in both scenarios of subtask 1.

2 Dataset

The organizers have provided different training
datasets for scenarios 1.1 and 1.2 of subtask 1,
each consisting of 350 abstracts of scientific pa-
pers from the Natural Language Processing (NLP)
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domain (Gábor et al., 2018) to be used for training
the models. All entities representing domain con-
cepts (e.g., word sense disambiguation and trans-
lation) are already annotated and listed in pairs
according to one of the relations that holds be-
tween them. For example, in the sentence “High
quality translation via word sense disambiguation
and accurate word order generation of the target
language”, the entity word sense disambiguation
is used for translation, hence it is annotated as
an instance of the USAGE relation type. There
are six distinct relation types: USAGE, TOPIC,
COMPARE, MODEL-FEATURE, RESULT, PART-
WHOLE. Except for COMPARE, all relations are
asymmetric, which means that the direction of re-
lation matters. For this reason, every asymmetri-
cal relation instance has additionally been anno-
tated with the direction of the relation using the
“reverse” flag to indicate that the order of entities
should be flipped.

The total number of training instances is 1228
and 1248 for subtask 1.1 and subtask 1.2 datasets,
respectively. Each instance contains exactly two
entities and both appear in the same sentence.
The subtask 1.2 dataset uses the same annotation
scheme as the first subtask, but the entities are au-
tomatically extracted rather than manually anno-
tated, thus introducing noise.

Table 1 shows the breakdown of relation types
for the two datasets. In general, the class distri-
bution is rather imbalanced, especially the TOPIC

relation, which is heavily under-represented in the
dataset for subtask 1.1.

3 System Description

We devised two supervised machine learning
models: an SVM with a rich set of features and
a CNN model. We next describe these models in
more detail.

3.1 SVM Model
Our best-performing model uses an SVM classi-
fier with a combination of sparse and dense fea-
tures.

Sparse feature encoding. To encode the sparse
features, we adopt the method of Chen et al.
(2006) who divide the sentence into contexts. In
a nutshell, the method consists in describing the
context in which the entities occur by dividing the
sentence into five contexts around the entity men-
tions. Two of these five contexts are related to the

entities involved in the relation, while the remain-
ing three contexts represent the words before, be-
tween, and after the entity mention pair. Every
feature describing a word contains the information
about which context it is located in. It also addi-
tionally contains the position of the word relative
to the start of that context. While this increases
the total number of parameters, it also provides in-
formation about the word ordering in the context
independently of the size of other contexts.

This encoding scheme is used to create fea-
tures of word tokens, part-of-speech tags, and
named entities. Similarly as Chen et al. (2006),
who in turn followed Charniak (2000) and Zhang
(2004), we experimented with additional con-
stituency parse features describing grammatical
functions and chunk tag information for all five
contexts, and IOB-chains of the heads of the two
entities. However, as preliminary experiments
showed that these additional features do not pro-
vide any performance gains, we decided not to in-
clude them in our final models, intending to eval-
uate these results in future work.

Word windows. In the scientific domain sen-
tence structures may be very complex, increasing
the distance between the two entity mentions. This
presents a considerable problem for sparse feature
encoding of the context between two entities: as
there the features are encoded for each word sep-
arately, the increase in distance yields a propor-
tional increase in the number of parameters, which
may cause overfitting. To mitigate this problem,
instead of representing the contexts for the whole
sentence, we use word windows that focus on the
words around the entity mentions. Based on pre-
liminary experiments, we decided to use different
sizes of word windows for before, between, and
after contexts: the window size for the context in
between the entities is a maximum of eight words
(at most four on the side of each entity; for longer
distance the middle words get ignored), while the
window size of the before and after contexts is at
most two words to the left and right, respectively.
The rationale for this is the assumption that words
indicative of relation type are more likely to lie in
between and close to one of the two entities.

Dependency features. Many systems from the
literature make use of dependency features
(Nguyen and Grishman, 2015a; Xu et al., 2016,
2015), which, intuitively, should be useful for re-
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Subtask 1.1 Subtask 1.2

Relation type Regular Reversed All Regular Reversed All Combined

USAGE 296 187 483 323 147 470 953
TOPIC 8 10 18 230 13 243 261

COMPARE 95 – 95 41 – 41 136
MODEL-FEATURE 226 100 326 123 52 175 501

RESULT 52 20 72 85 38 123 195
PART-WHOLE 158 76 234 117 79 196 430

Total 835 393 1228 919 329 1248 2476

Table 1: Class distribution in subtask 1 training datasets for scenario 1.1 (clean annotation) and scenario 1.2 (noisy
annotation). Last column shows the combined counts of both datasets.

lation extraction and classification. Specifically
for the relation classification task, we are inter-
ested in the connection between the two entities
involved in a relation within an instance. Thus,
after performing a dependency parse of the whole
sentence in which the relation appears, we find the
shortest dependency path between the two entities.
As demonstrated by Xu et al. (2016), the shortest
dependency path between two entities is advanta-
geous over a raw word sequence or a whole parse
tree, because it reduces irrelevant information and
because the shortest path dependency relations fo-
cus on the action and agents in a sentence and
are thus naturally suitable for relation classifica-
tion. The dependency parsing was done using the
SpaCy parser.1

Considering that the edges on the shortest de-
pendency path also have directions, we split the
path into two sub-paths based on the edge direc-
tion. Usually, the first path goes from the first
entity node towards the lowest common ancestor
in the dependency parse tree, while the other path
goes downwards to the second entity from the an-
cestor node. Then, each sub-path is encoded into a
series of one-hot sparse features that represent the
edge dependency type and the distance of the edge
from the starting point. Preliminary experiments
showed that these features lead to substantial per-
formance improvement.

Word embeddings and OOV words. To cap-
ture the semantic meaning of the words we used
300-dimensional pre-trained Google word2vec
word embeddings.2 In accordance with stan-
dard practice, which leverages the additive com-
positionality of word embeddings (Gittens et al.,
2017), we represent each context as a sum of its
word embeddings. As we divided the sentence

1https://spacy.io/
2https://code.google.com/archive/p/word2vec/

into five context, the result is five vectors, which
are subsequently concatenated into a single 1500-
dimensional vector.

Using a pre-trained word2vec model combined
with a scientific domain dataset led to many out-
of-vocabulary (OOV) words. After some very ba-
sic word preprocessing, e.g., handling of hyphens
and underscores, 1108 out of 9319 unique words
from the datasets (combined datasets of subtasks
1.1. and 1.2) remained uncovered by the word2vec
model. To tackle the OOV problem, we experi-
mented with a fallback mechanism based on the
context2vec (Melamud et al., 2016), an off-the-
shelf lexical substitution system. Our idea was
to retrieve the lexical substitutes for each OOV
word3 and retrieve their vectors instead – a tech-
nique akin to query expansion in information re-
trieval. We experimented with a number of vari-
ants of this method, however as none led to perfor-
mance improvements, we decided not to include
lexical substitution fallback in the final model.

Reversed relations. We use a boolean feature
to indicate the reverse direction of a relation in
an instance, as provided in the training datasets.
With the addition of that feature the model can
more easily differentiate between the regular and
reversed instances of a class. We expand the num-
ber of classes from the initial six types of relations
to include reversed relations as distinct classes, re-
sulting in an 11-way classification model. The
results obtained this way were better then using
a 6-way classification model; while this appears
counter-intuitive, we leave a more thorough in-
vestigation for future work. Once the predicted
classes are obtained, we map regular and reversed
relation types into one class, as in the original task.

Considering that COMPARE relation cannot be
3A lexical substitute is a meaning-preserving replacement

of a word in its context.
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reversed, we perform a post-prediction correction
if a relation instance has an active reverse flag in
the test set but the model predicted the instance
to be of the COMPARE class. In this case, we
change the prediction for that instance to be the
second most probable class according to the pre-
dicted class probabilities.

3.2 CNN model

Motivated by the high performance that deep
learning techniques have achieved in this area
(Kumar, 2017), we experimented with a con-
volutional neural network (CNN) model. This
model outperforms traditional feature-engineered
approaches on relation extraction benchmarks, as
shown by Nguyen and Grishman (2015b).

Architecture. The idea behind the use of a CNN
model is to use the convolutional layer to capture
the local content and meaning of a few consecu-
tive words, depending on the size of the convo-
lution kernel. Our CNN model comprises a sin-
gle convolution layer connected to a max-pooling
layer. As proposed by Nguyen and Grishman
(2015b), pooling is followed by a dropout layer,
which has been shown to work working well in
fully-connected layers (Hinton et al., 2012; Wan
et al., 2013; Krizhevsky et al., 2012). We use
the softmax function at the output layer activation
function. The model is implemented using Ten-
sorFlow.4

Features. The CNN model uses the same pre-
trained word2vec embeddings as the SVM model.
Since the training data is limited, the word embed-
dings are kept static and not adjusted during train-
ing. In addition to word embeddings, the model
is fed as input the position of words relative to
the entities. In this way, the model is provided
with the information on the positions of entities
and the distance of context words, which could af-
fect their relevance for predicting the relation type
(Nguyen and Grishman, 2015b). Thus, each word
has two position features: (1) a relative distance
to the closest word for the first entity and (2) a
relative distance to the closest word for the sec-
ond entity. Position embeddings are randomly ini-
tialized to 50-dimensional vectors and are shared
for the two entities. Unlike with the word embed-
dings, the position embeddings are adjusted dur-
ing training. The assumption is that this relative

4https://www.tensorflow.org/

distance from the entity mentions is inversely pro-
portional to the importance of words. In line with
this assumption, we capped the distance values at
15, as words at longer distances are likely not to
have much effect on relation type.

Another feature that we added is the informa-
tion about the shortest dependency path, as de-
scribed by Nguyen and Grishman (2015a). As-
suming that words from the shortest dependency
path are more relevant than others, we add for each
word a boolean value feature indicating whether
that word belongs to the shortest dependency path.
We also use an additional indicator feature to dis-
tinguish the relation instances with the REVERSE
attribute, even though the CNN model has been
trained as a 6-way classifier. All the features per-
taining to a word are concatenated and considered
as a single element when passed to the first layer
of the network.

Lastly, we include word windows into the CNN
model, in the same manner as we did for the SVM
model, but this time increasing the window sizes
of contexts around the entities, as this has less of
an effect on the number of parameters than it was
the case for the SVM model. Thus, we set the win-
dow size for between context to four words from
each side, while the window size of before and af-
ter contexts has been set to the five words closest to
the entities. For clarification, word windows sim-
ply decide the size of the sentence (not to be con-
fused with position features, which embed previ-
ously discussed distances of each word inside the
window).

4 Evaluation and Results

As subtask 1.1 and 1.2 are very similar and dif-
fer only in how the labeling was carried out (man-
ual or automatic), we decided to combine the
training sets of the two tasks in one training set.
This allowed us to increase the number of in-
stances for the TOPIC relation type, which was
severely under-represented in subtask 1.1 training
set (cf. Table 1).

The hyperparameters for the SVM model were
selected using cross-validated grid search. The
CNN model was trained using early stopping with
batch size of 64. Kernel sizes of the convolution
layers are 3, 4, and 5 words, each size having 32
kernels. Adam algorithm was used for the model
optimization. A dropout rate of 0.5 was used dur-
ing the training.
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Test set Model P R F1

Subtask 1.1 SVM 64.64 75.57 69.68
CNN 63.35 72.42 67.58

Subtask 1.2. SVM 71.64 80.24 75.69
CNN 14.78 15.81 15.28

Table 2: Relation classification results

The evaluation was performed on the test sets
provided by the task organizers. Each test set is
comprised of 150 scientific paper abstracts with
350 relation instances. Table 2 shows macro-
averaged precision, recall, and F1 score for the two
models on the two test sets.

Differently from previous findings (Nguyen and
Grishman, 2015b), in our case the SVM outper-
formed the CNN model. This might be explained
by the relatively small size size of the training set.
On subtask 1.1, the CNN performs slightly worse
than the SVM model, while it fails completely on
the second subtask. We presume this might be due
to an implementation error, but we were unable
to identify the problem. In the official SemEval
competition, the SVM model ranked 7th among
28 submissions on subtask 1.1 and 7th among 20
submissions on subtask 1.2.

5 Conclusion

We described two models for relation classifica-
tion with which participated in the SemEval-2018
Task 7, subtasks 1.1 and 1.2 on relation classifi-
cation: an SVM model and a CNN model. Our
models combine sparse, handcrafted features and
dense features based on word embeddings. Al-
though deep learning models currently excels at
relation extraction tasks, in our case, probably due
to the small relatively small training set available,
SVM outperformed the CNN model, ranking 7th
in both evaluation runs. Overall, the tasks proved
to be very challenging, mainly due to the peculiar-
ities of the domain.

For future work, we intend to retrain our mod-
els on a larger dataset using distant supervision
based on publicly available scientific corpora,
and also experiment with training domain-specific
word2vec embeddings.
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