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Abstract

SemEval 2018 Task 7 focuses on relation ex-
traction and classification in scientific litera-
ture. In this work, we present our tree-based
LSTM network for this shared task. Our ap-
proach placed 9th (of 28) for subtask 1.1 (rela-
tion classification), and 5th (of 20) for subtask
1.2 (relation classification with noisy entities).
We also provide an ablation study of features
included as input to the network.

1 Introduction

Information Extraction (IE) has applications in a
variety of domains, including in scientific litera-
ture. Extracted entities and relations from scien-
tific articles could be used for a variety of tasks, in-
cluding abstractive summarization, identification
of articles that make similar or contrastive claims,
and filtering based on article topics. While onto-
logical resources can be leveraged for entity ex-
traction (Gábor et al., 2016), relation extraction
and classification still remains a challenging task.
Relations are particularly valuable because (unlike
simple entity occurrences) relations between enti-
ties capture lexical semantics. SemEval 2018 Task
7 (Semantic Relation Extraction and Classification
in Scientific Papers) encourages research in rela-
tion extraction in scientific literature by providing
common training and evaluation datasets (Gábor
et al., 2018). In this work, we describe our ap-
proach using a tree-structured recursive neural net-
work, and provide an analysis of its performance.

There has been considerable previous work with
scientific literature due to its availability and inter-
est to the research community. A previous shared
task (SemEval 2017 Task 10) investigated the ex-
traction of both keyphrases (entities) and relations
in scientific literature (Augenstein et al., 2017).
However, the relation set for this shared task was
limited to just synonym and hypernym relation-

ships. The top three approaches used for relation-
only extraction included convolutional neural net-
works (Lee et al., 2017a), bi-directional recur-
rent neural networks with Long Short-Term Mem-
ory (LSTM, Hochreiter and Schmidhuber, 1997)
cells (Ammar et al., 2017), and conditional ran-
dom fields (Lee et al., 2017b).

There are several challenges related to scientific
relation extraction. One is the extraction of the
entities themselves. Luan et al. (2017) produce
the best published results on the 2017 ScienceIE
shared task for entity extraction using a semi-
supervised approach with a bidirectional LSTM
and a CRF tagger. Zheng et al. (2014) provide an
unsupervised technique for entity linking scientific
entities in the biomedical domain to an ontology.

Contribution. Our approach employs a tree-
based LSTM network using a variety of syntac-
tic features to perform relation label classification.
We rank 9th (of 28) when manual entities are used
for training, and 5th (of 20) when noisy entities are
used for training. Furthermore, we provide an ab-
lation analysis of the features used by our model.
Code for our model and experiments is available.1

2 Methodology

Syntactic information between entities plays an
important role in relation extraction and classi-
fication (Mintz et al., 2009; MacAvaney et al.,
2017). Similarly, sequential neural models, such
as LSTM, have shown promising results on sci-
entific literature (Ammar et al., 2017). There-
fore, in our approach, we leverage both syntac-
tic structures and neural sequential models by em-
ploying a tree-based long-short term memory cell
(tree-LSTM). Tree-LSTMs, originally introduced
by Tai et al. (2015), have been successfully used to

1https://github.com/Georgetown-IR-Lab/
semeval2018-task7
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Figure 1: Our tree LSTM network.

capture relation information in other domains (Xu
et al., 2015; Miwa and Bansal, 2016). On a high
level, tree-LSTMs operate very similarly to se-
quential models; however, rather than processing
tokens sequentially, they follow syntactic depen-
dencies; once the model reaches the root of the
tree, the output is used to compute a prediction,
usually through a dense layer. We use the child-
sum variant of tree-LSTM (Tai et al., 2015).

Formally, let Sj = {t1,j , . . . , tn,j} be a
sentence of length n, e1 = {ti, . . . , tk} and
e2 = {tp, . . . , tq} two entities whose relation-
ship we intend to classify; let H(e1), H(e2) be
the root of the syntactic subtree spanning over
entities e1 and e2. Finally, let T(e1, e2) be
the syntactic sub-tree spanning from H(e1) to
H(e2). For the first example in Table 1, e1 =
{‘Oral’, ‘communication’} , e2 = {‘indices’},
H(e1) = {‘communication’}, T(e1, e2) =
{‘communication’, ‘offer’, ‘indices’}. The pro-
posed model uses word embeddings of terms in
T(e1, e2) as inputs; the output of the tree-LSTM
cell on the root of the syntactic tree is used to pre-
dict one of the six relation types (y) using a soft-
max layer. A diagram of our tree LSTM network
is shown in Figure 1.

In order to overcome the limitation imposed by
the small amount of training data available for this
task, we modify the general architecture proposed
in (Miwa and Bansal, 2016) in two crucial ways.
First, rather than using the representation of enti-
ties as input, we only consider the syntactic head
of each entity. This approach improves the gen-
eralizability of the model, as it prevents overfit-
ting on very specific entities in the corpus. For
example, by reducing ‘Bag-of-words methods’ to
‘methods’ and ‘segment order-sensitive models’ to
‘models’, the model is able to recognize the COM-

Relation (abbr.) Example

USAGE (U) Oral communication may offer
additional indices...

MODEL-FEATURE
(M-F)

We look at the intelligibility of
MT output...

PART WHOLE
(P-W)

As the operational semantics of
natural language applications
improve...

COMPARE (C) Bag-of-words methods are shown
to be equivalent to
segment order-sensitive methods
in terms of...

RESULT (R) We find that interpolation methods
improve the performance...

TOPIC (T) A formal analysis for a large class
of words called
alternative markers...

Table 1: Example relations for each type. Entities are
underlined, and all relations are from the first entity to
the second entity (non-reversed).

PARE relation between these two entities (see Ta-
ble 1). Second, we experimented with augmenting
each term representation with the following fea-
tures:

• Dependency labels (DEP): we append to
each term embedding the label representing
the dependency between the term and its par-
ent.

• PoS tags (POS): the part-of-speech tag for
each term is append to its embedding.

• Entity length (ENTLEN): we concatenate the
number of tokens in e1 and e2 to embed-
dings representation of heads H(e1) to H(e2).
For terms that are not entity heads, the entity
length feature is replaced by ‘0’.

• Height: the height of each term in the syntac-
tic subtree connecting two entities.

3 Experimental Setup

SemEval 2018 Task 7 focuses on relation extrac-
tion, assuming a gold set of entities. This al-
lows participants to focus on specific issues related
to relation extraction with a rich set of seman-
tic relations. These include relations for USAGE,
MODEL-FEATURE, PART WHOLE, COMPARE, RE-
SULT, and TOPIC. Examples of each type of rela-
tion are given in Table 1.

The shared task evaluates three separate sub-
tasks (1.1, 1.2, and 2). We tuned and submitted
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Dataset U M-F P-W C R T

Subtask 1.1
Train 409 289 215 86 57 15
Valid. 74 37 19 9 15 3
Test 175 66 70 21 20 3

Subtask 1.2
Train 363 124 162 29 94 207
Valid. 107 51 34 12 29 36
Test 123 75 56 3 29 69

Table 2: Frequency of relation labels in train, valida-
tion, and test sets. See Table 1 for relation label ab-
breviations. Subtask 1.1 uses manual entity labels, and
subtask 1.2 uses automatic entity labels (which may be
noisy).

our system for subtasks 1.1 and 1.2. In both of
these subtasks, participants are given scientific ab-
stracts with entities and candidate relation pairs,
and are asked to determine the relation label of
each pair. For subtask 1.1, both the entities and
relations are manually annotated. For subtask 1.2,
the entities are automatically generated using the
procedure described in Gábor et al. (2016). This
procedure introduces noise, but represents a more
realistic evaluation environment than subtask 1.1.
In both cases, relations and gold labels are pro-
duced by human annotators. All abstracts are from
the ACL Anthology Reference Corpus (Bird et al.,
2008). We randomly select 50 texts from the train-
ing datasets for validation of our system. We pro-
vide a summary of the datasets for training, vali-
dation, and testing in Table 2. Notice how the pro-
portions of each relation label vary considerably
among the datasets.

We experiment with two sets of word embed-
dings: Wiki News and arXiv. The Wiki News em-
beddings benefit from the large amount of general
language, and the arXiv embeddings capture spe-
cialized domain language. The Wiki News em-
beddings are pretrained using fastText with a di-
mension of 300 (Mikolov et al., 2018). The arXiv
embeddings are trained on a corpus of text from
the cs section of arXiv.org2 using a window of 8
(to capture adequate term context) and a dimen-
sion of 100 (Cohan et al., 2018). A third variation
of the embeddings simply concatenates the Wiki
News and arXiv embeddings, yielding a dimen-
sion of 400; for words that appear in only one of

2https://github.com/acohan/
long-summarization

System F1 Rank

Subtask 1.1 (28 teams)
Our submission 60.9 9
Median team 45.5
Mean team 37.1

Subtask 1.2 (20 teams)
Our submission 78.9 5
Median team 70.3
Mean team 54.0

Table 3: Performance result comparison to other task
participants for subtasks 1.1 and 1.2.
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Figure 2: Confusion matrix for subtask 1.1.

the two embedding sources, the available embed-
dings are concatenated with a vector of appropri-
ate size sampled from N (0, 10−8).

For our official SemEval submission, we train
our model using the concatenated embeddings and
one-hot encoded dependency label features. We
use a hidden layer of 200 nodes, a 0.2 dropout
rate, and a training batch size of 16. Syntactic
trees were extracted using SpaCy3, and the neural
model was implemented using MxNet4.

The official evaluation metric is the macro-
averaged F1 score of all relation labels. For ad-
ditional analysis, we use the macro precision and
recall, and the F1 score for each relation label.

4 Results and Discussion

In Table 3, we provide our official SemEval re-
sults in the context of other task participants. In
both subtasks, we ranked above both the median
and mean team scores, treating the top-ranking
approach for each team as the team’s score. For
Subtask 1.1, we ranked 9 out of 28, and for Sub-
task 1.2, we ranked 5 out of 20. This indicates

3https://spacy.io/
4https://mxnet.incubator.apache.org/
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Overall F1 by label

Features P R F1 U M-F P-W C R T

Subtask 1.1
(no features) 56.9 64.1 59.5 81.4 51.5 59.9 57.8 61.9 44.4
DEP 53.5 54.1 53.6 79.1 55.5 58.2 63.8 64.9 0.0
DEP + POS 60.1 59.1 59.5 79.9 57.1 58.5 68.3 60.0 33.3
DEP + POS + EntLen 59.4 64.1 60.9 80.0 59.0 56.9 58.3 61.1 50.0
DEP + POS + EntLen + Height 52.1 53.3 52.4 79.2 57.4 62.2 56.0 59.5 0.0

Subtask 1.2
(no features) 74.2 78.9 75.4 80.0 65.6 72.6 57.1 80.0 97.1
DEP 76.4 78.5 76.4 79.2 67.2 73.0 66.7 79.4 93.1
DEP + POS 75.5 80.3 77.3 82.0 73.9 73.6 57.1 80.0 97.1
DEP + POS + EntLen 78.2 79.7 78.0 81.9 69.3 70.5 66.7 82.5 97.1
DEP + POS + EntLen + Height 73.0 78.7 74.8 79.5 70.7 70.3 57.1 74.3 97.1

Table 4: Feature ablation results for subtasks 1.1 and 1.2. DEP are dependency labels, POS are part of speech
labels, EntLen is is the length of the input entities, and Height is the height of the entities in the dependency tree.
In both subtasks 1.1 and 1.2, the combination of dependency labels, parts of speech, and entity lengths yield the
best performance in terms of overall F1 score.

Embeddings P R F1

Subtask 1.1
Wiki News 59.2 57.3 57.6
arXiv 58.5 55.1 56.4
Wiki News + arXiv 59.4 64.1 60.9
Subtask 1.2
Wiki News 73.1 76.2 72.7
arXiv 65.4 67.4 65.9
Wiki News + arXiv 78.2 79.7 78.0

Table 5: Performance comparison for subtasks 1.1 and
1.2 when using Wiki News and arXiv embeddings.
The concatenated embeddings outperform the individ-
ual methods.

that our approach is generally more tolerant to the
noisy entities given in Subtask 1.2 than most other
approaches. Figure 2 is a confusion matrix for
the official submission for subtask 1.1. The three
most frequent labels in the training data (USAGE,
MODEL-FEATURE, and PART WHOLE) are also the
most frequently confused relation labels. This be-
havior can be partially attributed to the class im-
balance.

In Table 4, we examine the effects of various
feature combinations on the model. Specifically,
we check the macro averaged precision, recall, and
F1 scores for both subtask 1.1 and 1.2 with various
sets of features on the test set. Of the combinations
we investigated, including the dependency labels,
part of speech tags, and the token length of entities

yielded the best results in terms of overall F1 score
for both subtasks. The results by individual rela-
tion label are more mixed, with the overall best
combination simply yielding better performance
on average, not on each label individually. Inter-
estingly, the entity height feature reduces perfor-
mance, perhaps indicating that it is easy to overfit
the model using this feature.

Table 5 examines the effect of the choice of
word embeddings on performance. In both sub-
tasks, concatenating the Wiki News and arXiv
embeddings yields better performance than using
a single type of embedding. This suggests that
the two types of embeddings are useful in dif-
ferent cases; perhaps Wiki News better captures
the general language linking the entities, whereas
the arXiv embeddings capture the specialized lan-
guage of the entities themselves.

5 Conclusion

In this work, we investigated the use of a tree
LSTM-based approach for relation classification
in scientific literature. Our results at SemEval
2018 were encouraging, placing 9th (of 28) at
subtask 1.1 (relation classification with manually-
annotated entities), and 5th (of 20) at subtask
1.2 (relation classification using automatically-
generated entities). Furthermore, we conducted an
analysis of our system by varying the system pa-
rameters and features.
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