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Abstract

A natural language argument is composed of a
claim as well as reasons given as premises for
the claim. The warrant explaining the reason-
ing is usually left implicit, as it is clear from
the context and common sense. This makes a
comprehension of arguments easy for humans
but hard for machines. This paper summarizes
the first shared task on argument reasoning
comprehension. Given a premise and a claim
along with some topic information, the goal
is to automatically identify the correct war-
rant among two candidates that are plausible
and lexically close, but in fact imply opposite
claims. We describe the dataset with 1970 in-
stances that we built for the task, and we out-
line the 21 computational approaches that par-
ticipated, most of which used neural networks.
The results reveal the complexity of the task,
with many approaches hardly improving over
the random accuracy of ~ 0.5. Still, the best
observed accuracy (0.712) underlines the prin-
ciple feasibility of identifying warrants. Our
analysis indicates that an inclusion of external
knowledge is key to reasoning comprehension.

1 Introduction

When we argue in natural language, we give rea-
sons as premises for our claims. A fundamental
pragmatic instrument in this regard is to leave those
parts of an argument unstated that can be presup-
posed. This is particularly common for the reason-
ing between an argument’s premises and its claim,
called implicit warrants there (Toulmin, 1958). A
warrant takes the role of an inference rule, i.e.,
the abstract structure of an argument is reason —
(since) warrant — (therefore) claim. In princi-
ple, this structure applies to deductive arguments,
which allows us to validate arguments properly
formalized in propositional logic. However, most
natural language arguments are in fact inductive
(Govier, 2010) or defeasible (Walton, 2007).
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Topic: Tax Break for Sports.

Additional Information: Should pro sports leagues enjoy
nonprofit status?

Premise (Reason): Government is already struggling to pay
for basic needs.

And since

v/ Warrant 0: the government isn’t required to pay for all
the country’s needs

X Warrant 1: the government is required to pay for the
country’s needs

Claim: Sport leagues should not enjoy nonprofit.

Figure 1: Instance of the argument reasoning compre-
hension task. The correct warrant has to be classified.

Now, when we comprehend an argument, we re-
construct its warrant driven by the cognitive princi-
ple of relevance (Wilson and Sperber, 2004). What
is easy for humans in many cases, however, turns
out to be hard for machines, because reasoning
usually depends on context and common sense. In
(Habernal et al., 2018), we have thus introduced the
argument reasoning comprehension task in order to
study the construction and identification of implicit
warrants for natural language arguments. It forms
the basis of the shared task presented here:

Task Given an argument with a reason serving
as a premise for a claim, along with the fopic and
some additional information of the discussion they
occur in, identify the correct warrant among two
opposing candidates, warrantO and warrantl.

With opposing, we here mean that the two candi-
date warrants actually imply contradicting claims,
the correct one and its opposite. An instance of the
task is shown in Figure 1. Being a binary classifica-
tion task, the main evaluation measure of argument
reasoning comprehension is accuracy.

To our knowledge, this is the first shared NLP
task directly targeting argumentation; others tasks
have only been sketched so far (Kiesel et al., 2015).
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A solution to our task will represent a substan-
tial step towards automatic warrant reconstruction,
which in turn is important for the general long-
term goal of automatic argument evaluation. So far,
most research on computational argumentation fo-
cused on mining claims and premises from text and
assessing their properties. In contrast, filling the
gap between claims and premises computationally
remains an open issue, due to the inherent difficulty
of reconstructing the world knowledge and reason-
ing patterns in arguments (Feng and Hirst, 2011;
Green, 2014; Boltuzi¢ and gnajder, 2016). Previ-
ous tasks have dealt with the textual entailment of a
hypothesis from a proposition (Dagan et al., 2009)
or with semantic inference (Bowman et al., 2015).
While understanding semantics is important in the
given task, argumentation also reasoning beyond
what is understood, i.e., pragmatics.

As a basis for the shared task, we built a new
dataset with 1970 instances based on authentic En-
glish arguments, whose concept and construction
process is detailed in Section 2. We outline the
systems that participated in the task in Section 3.
Most systems implement a computational approach
that employs one or more neural networks (often
LSTMs, often with attention) based on different
pre-trained embedding models. We then present
the results of all systems on the test set of the shared
task in Section 4 and analyze specific cases in Sec-
tion 5, before we finally conclude (Section 6).

2 Dataset

This section presents the dataset with all instances
used in the shared task. We summarize the main
points from its construction process, which is de-
scribed in detail in (Habernal et al., 2018).

2.1 Task Instances

Let R be the reason for the claim C in a natural
language argument. Then there is a warrant W that
explains why R supports C, but W is left implicit.
For example, if C is “It should be illegal to declaw
your cat” and R is “They need to use their claws for
defense and instinct”, then W could be specified as
‘If cat needs claws for instincts, declawing would
be against nature’ or similar.

The question is how to find a warrant W for a
given reason R and claim C. To obtain candidate
warrants systematically for our dataset, we propose
a trick. In particular, we first construct an alterna-
tive warrant AW that explains why R may serve as

Unit Text

Reason  Cooperating with Russia on terrorism ignores
Russia’s overall objectives.

Claim Russia cannot be a partner.

Warrant0 Russia has the same objectives of the US.

Warrant]l Russia has the opposite objectives of the US.

Reason  Economic growth needs innovation.

Claim 3-D printing will change the world.

Warrant0 There is no innovation in 3-d printing
since it’s unsustainable.

Warrantl There is much innovation in 3-d printing
and it is sustainable.

Reason  College students have the best chance of
knowing history.

Claim College students’ votes do matter in an election.

Warrant0 Knowing history doesn’t mean that we will
repeat it.

Warrantl Knowing history means that we won’t repeat it.

Table 1: Three example task instances from the dataset.
In all cases, warrantl is the alternative warrant. For
brevity, we omit the topic and additional information.

support for the opposite —C of the claim C. For the
example above, we invert C to “It should be legal to
declaw your cat” (—C). —=C may be explained based
on R quite plausibly with the alternative warrant
“Most house cats don’t face enemies” (AW). Ana-
log to C and —~C, we then invert AW to “Most house
cats face enemies”, which is a plausible warrant W
for the original reason-claim pair (R,C).

Constructing a plausible alternative warrant is
not always possible, as many reasons already con-
vey the arguer’s stance. If it is, however, W and AW
usually capture the core of a reason’s relevance and
reveal the implicit presuppositions, due to the trick
we performed for construction. For such as cases,
we define an instance of our task as a 6-tuple:

Instance (reason, claim, warrantO, warrantl,
topic, additional information)

The question to be answered is whether warrantO
is W and warrantl is AW, or vice versa. As context,
we provide a short fopic specification and some ad-
ditional information describing the topic. Figure 1
has already shown an example. Further are given in
Table 1. They all result from the following process.

2.2 Data Acquisition and Annotation

To obtain a dataset with a permissive license, we
decided to build a new dataset from scratch. As
source data, we used user-generated web comments
from the well-moderated Room for Debate of the
New York Times, which covers arguments on a
variety of contemporary controversial issues.

"https://www.nytimes.com/roomfordebate
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We manually selected 188 debates with polar
questions in the title from a six-year span (2011-
2017). We converted each question into a claim C
(e.g., “It should be illegal to declaw your cat”) and
derived a directly opposing claim —C (“It should
be legal to declaw your cat”). Then, we crawled
all comments from the debates and sampled about
11,000 high-ranked, root-level comments? from
which 5,000 were selected randomly as a basis for
the dataset construction. Each comment was split
into elementary discourse units using SistaNLP
(Surdeanu et al., 2015). To obtain task instances,
we then performed the following eight-step crowd-
sourcing process using Amazon Mechanical Turk:

1. Stance Annotation. For each comment, the
crowdworkers first classified what stance it takes, if
it remains neutral, or if it does not take any stance.

2. Reason Span Annotation. In all 2,884 comments
taking a stance, the workers then marked sequences
of discourse units that give a reason for the claim.

3. Reason Gist Summarization. In this step, the
workers rewrote all 5,119 marked reasons (2,026
within arguments), such that their gist remains the
same but the clutter is removed. The result is a
reason R for the claim C.

4. Reason Disambiguation. In order to ensure
that R implies C really holds, the workers next de-
cided whether C or —C is more plausible for R, or
whether both are similarly (im)plausible. We kept
only those 1,955 reason-claim pairs where workers
agreed that C is most plausible.

5. Alternative Warrant. This step was the trickiest.
As in the example above, the workers had to specify
a plausible alternative warrant AW, explaining why
R implies —C, or declare that impossible.

6. Alternative Warrant Validation. Afterwards,
other workers validated each of the 5,342 specified
alternative warrants AW as to whether it actually re-
lates to R, by identifying R among two alternatives:
R itself and the lexically most similar reason from
the same debate topic. For the 3,791 correctly vali-
dated cases, we let workers score how logical AW
is (0-2) and only kept those 2,613 that had a mean
score of at least 0.68. This threshold was chosen
based on a manual examination of the scores.

ZWe removed ‘noisy’ candidates based on several indica-
tors, such as the absence of quotations or URLs and certain
lengths. We did not check any quality criteria of arguments,

though, because this was not our focus; see, for instance,
(Wachsmuth et al., 2017) for argumentation quality.
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Figure 2: Cohen’s k agreement for stance annotation
on 98 comments. As a trade-off between the number
of kept instances and their reliability, we chose five an-
notators and a threshold of 0.95 for this task, which re-
sulted in k¥ = 0.58 (moderate to substantial agreement).

7. Warrant For Original Claim. Given R and C,
workers then should create a minimally modified
version of each AW that may serve as an actual war-
rant W for C (as in the second half of the example
above). They succeeded to do so in 2,447 cases.

8. Warrant Validation. To ensure that only W is
correct for R and C, all tuples (R,C,W,AW ) were
validated again. Unclear cases were resolved by an
expert. We obtained 1,970 instances of the argu-
ment reasoning comprehension task, so 1,970 pairs
of warrant0 and warrant! for a reason and a claim,
along with a topic and the additional information.

2.3 Agreement

To assess quality in the crowdsourcing process,
we relied on MACE (Hovy et al., 2013), which
estimates gold labels for a set of workers, outper-
forming simple majority votes. Given the number
of the different crowdsourcing tasks and their vari-
ety, here we only demonstrate the first step, namely
stance annotation. We collected 18 assignments per
item and split them into two groups (9+9) based
on their submission time. We then considered each
group as an independent experiment and estimated
gold labels for each group. Having two indepen-
dent “experts from the crowd” allowed us to com-
pute standard agreement scores. We also varied the
size of each group from 1 to 9 by repeated random
sampling of assignments, and we tuned the MACE
threshold for keeping only the most confident pre-
dictions. Figure 2 shows the Cohen’s x agreement
for stance annotation with respect to the crowd
size computed by our method. The decision what
number of workers per task to take (five in case of



stance annotation) implies a trade-off between the
number of instances and their reliability. We per-
formed similar quality measures with reasonable
agreement for the other crowdsourcing steps too.
Details are given in (Habernal et al., 2018).

2.4 Datasets in the Shared Task

For the shared task, we split the 1,970 instances into
three sets based on the year of the debate they were
taken from: 2011-2015 became the training set
(1,210 instances), 2016 the development set (316
instances), and 2017 the test set (444 instances).
This follows the paradigm of learning on past data
and predicting on new ones. In addition, it removes
much lexical and topical overlap. The same split
has been used by Habernal et al. (2018).

The shared task had two phases, trial and test.
In the trial phase, the training and development set
were given, both with gold labels stating the correct
warrant for all instances. In the test phase, all three
datasets were available. Naturally, no labels were
given for the test set instances. All provided data is
licensed under Creative Commons-family license.

3 Approaches

This section briefly summarizes the computational
approaches of the systems that participated in the
shared task as well as baselines. Intuitions and
detailed explanations are given in the system de-
scription papers associated to the shared task.

3.1 Participating Systems

The following 20 systems participated in the shared
task, sorted alphabetically. In addition, a 21st sys-
tem called Joker took part, but the team behind did
not provide any description. For many of the sys-
tems, many more details are given in the respective
SemEval-2018 system description papers.

ArcNet uses GloVe embeddings and an LSTM
encoder to get the semantic representation of each
input (reason, claim, and both warrants). Then
an attention mechanism aligns the reason and the
warrant so that the reason-aware warrant repre-
sentation is generated. Finally, a bilinear function
matches the claim with the reason-aware warrant.
The network is trained to minimize margin loss.
The submission was based on an ensemble model
of 10 training runs with the identical architecture.

ArgEns-GRU votes a majority on an ensemble
of the following three systems: First, a shared GRU

network that learns one representation of the rea-
son, claim, and both warrants each, initialized with
100-dimensional GloVe embeddings. Its output is
concatenated and passed through a softmax layer
for the final predictions. Second, an extension of
the GRU with an attention on the reason, claim, and
both warrants each. And third, another GRU model
extended with negation and polarity features.

ART uses a bi-directional LSTM with an atten-
tion mechanism on top, followed by a multi-layer
perceptron network.

blcu_nlp not only pays attention to the consen-
sual part between each warrant and other infor-
mation, but also to the contradictory part between
two warrants. On the model’s input (GloVe embed-
dings), warrant0, claim, reason, and debate info are
concatenated in order to put attention on warrantl.
An analog structure is used for the attention on war-
rant(. After obtaining two vectors ‘attented wOQ°
and ‘attented_w1°‘ — referring to the ESIM model
(Chen et al., 2017) — the two warrants are aligned.
A similarity matrix helps to highlight the consen-
sual and the contradictory part. The decision is then
drawn after passing through feed-forward layers.
A majority voting strategy is used in the final en-
semble, which is based on five models performing
best on the development data.

Deepfinder shares one LSTM layer for warrant0,
warrantl, claim, and reason, while the fopic part
uses one LSTM alone. All of them share the same
word embedding layer before LSTM layers. After
that, one individual dot product is computed for
the output of the warrantO LSTM and each of the
claim, reason and claim (the same is done for the
warrant] LSTM). The resulting dot products are
concatenated and fed into a softmax layer.

ECNU modifies the baseline intra-warrant atten-
tion (Habernal et al., 2018) by using a CNN and
an LSTM for representing each sentence (claim,
reason, debate, warrant0, and warrantl). Differ-
ent parts of warrantO and warrantl are used as
an attention vector to obtain representations of the
warrants. Similarly, different parts of claim and
the opposite claim serve as attention for the final
representation. The final decision is then given by
a vote from three networks.

GIST uses pretrained word2vec embeddings as
well as the ESIM model (Chen et al., 2017), trained
on the SNLI (Bowman et al., 2015) and MultiNLI
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(Nangia et al., 2017) datasets. The parameters have
been frozen afterwards. Then, pairs of sentences
are fed into the the ESIM model. For warrant0, for
example, these pairs are (claim, warrant0), (war-
rant0, reason), and (warrantO, warrantl). Also,
another bi-LSTM module encoding claim, warrant,
and reason is added. The output vectors of each
pair and the bi-LSTM are concatenated after aver-
aging and max pooling, and the final prediction is
made through feed-forward layers.

HHU encodes reason, claim, and warrants us-
ing a bi-directional LSTM. Next, warrant0, reason,
and claim are fed into another LSTM; similarly,
warrantl, reason, and claim to another LSTM in
parallel. Both branches are followed by a dropout
and two common dense layers. Embeddings have
been pre-trained in four different flavors: fasttext-
embeddings trained on the entire Wikipedia corpus,
two embeddings trained on the task’s dataset using
the word2vec skip-gram model with different di-
mensionalities, and another word2vec model based
on the tasks vocabulary but augmented with related
articles from Wikipedia. For all embeddings, differ-
ent parameter combinations and seeds were used
to train an ensemble of 623 models in total.

ITNLP-ARC first encodes sentences (warrant,
reason, claim) using LSTMs. Attention is used to
merge the reason vector with the claim vector. A
shared weight matrix then holds the relationship
between the warrant and the attention vector, from
which the maximum is chosen as the answer. An
ensemble method is used for the final vote.

lyb3b encodes sentences using word2vec or
GloVe embeddings and a bi-directional LSTM. The
instances are treated as positive or negative, depend-
ing on the correct training warrant. The network
then combines the warrant with the reason, claim,
and additional info. Finally, a fully-connected layer
is used to decide whether the instance is correct.

mingyan performs a word-by-word attention that
is fused with the original representation then. Self-
attention pooling produces a single vector fed into
a sigmoid function, trained with cross-entropy loss.

NLITrans attempts to leverage the transfer of
semantic knowledge from a bi-directional LSTM
encoder with max pooling trained on the MultiNLI
corpus (Nangia et al., 2017). This yields a small
performance boost on the development set. All sen-
tences (claim, reason, warrant0, and warrantl) are

encoded with this a transferred encoder. Then, task-
specific representations of two ‘arguments’, one
for each warrant, are learned via fully-connected
layers. A final linear layer generates an indepen-
dent score representing the fit of each warrant to
the argument. These are concatenated and passed
through softmax to generate a probability distribu-
tion over the two warrants.

RW2C uses two neural networks. The first one
classifies each warrant as true or false separately
and chooses the one with higher confidence as the
right one. The second model makes a decision
given two warrant candidates. The final prediction
is an ensemble over the previous predictions. Both
models represent sentences using a CNN.

SNU_IDS decides whether a logic built on a set
of given sentences (claim, reason, and warrant) is
plausible. It accepts only one warrant at a time
and outputs a score on the warrant’s validity. The
intuition is that the model can learn what has more
meaningful semantics of natural language when it
judges whether the logic of the given sequence is
correct, instead of just selecting the more probable
warrant among two candidates. The model consists
of an encoding layer with GloVe embeddings (Pen-
nington et al., 2014) and a CoVe sentence encoder
(McCann et al., 2017), a ‘localization’ layer (a set
of fully connected layers), and output layers that
combine calculating several arithmetic measures
over the input representation and compute a final
score using a logistic layer on top.

TakeLlLab preprocesses sentences from the data-
set, applies some arithmetic, converts them to Skip-
Thought vectors, and feeds them into an SVM clas-
sifier with fine-tuned hyperparameters. The Skip-
Thought vectors are sentence representation vec-
tors whose encoder and decoder (with an identical
structure to RNN encoder-decoders used for neural
machine translation) are trained on a large corpus
of books unbiased in domain (Kiros et al., 2015).

TRANSRW learns the semantic representation
of sentences (reason, warrants, claim) using a con-
volutional neural network. The assumption behind
is that a composition of the reason and the warrant
is close to the representation of the claim.

UniMelb combines 3 stacked LSTMs, one for
the reason, one for the claim, and one shared
Siamese Network for the two warrants under inves-
tigation. It generates semantic feature vectors that
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serve as input to a shared compressed feature space
by using simple vector operations and semantic
similarity classification to enforce the interrelation-
ships between them. In doing so, the aim is to
learn a form of “generative implication” through
the semantic feature vectors. The vectors are able
to correctly encode the interrelationships between
areason, a claim, and both the correct and incorrect
warrants. The given data is augmented by utilizing
WordNet synonym fuzzing.

YNU-HPCC uses a bi-directional LSTM with
attention whose input is divided into three parts
(claim, reason, and both warrants). To prevent
overfitting, dropout is added before the final layer.

YNU Deep combines the reason and the claim
with a so-called ‘story’ feature. The story feature
is merged with the warrant. The network is a bi-
directional LSTM with attention and uses GloVe
embeddings. Ensemble technology is put on top to
mitigate the small size of the data.

ztangfdu first concatenates the claim and the rea-
son as one sentence named ‘sentl’, and denotes the
correct warrant as ‘sent2’ and the wrong warrant
as ‘sent3’, respectively. The output of an LSTM
layer with non-trained embeddings then represents
each of the sentences. After applying mean pool-
ing to transform the output matrices to vectors, two
fully connected layers cater for obtaining the dif-
ference score between ‘sent2’ and ‘sent3’, whose
minimization is the core of the loss function.

3.2 Baselines

For the official task, we provided only a simple
naive random baseline. The outcome (warrant0 or
warrantl) is drawn from a Bernoulli distribution
(6 = 0.5) resulting in a theoretical accuracy of 0.5.
The reported baseline was a single random draw.
Further computational baseline approaches, such
as a language model, are evaluated in (Habernal
et al., 2018), but we did not consider them within
the official competition. There, we also report hu-
man bounds for argument reasoning comprehen-
sion based on a crowdsourcing study, where each
of 173 participants had to solve 10 instances. The
mean accuracy was 0.798, but varied depending
on the participants’ prior knowledge of reasoning,
logic, and argumentation. Those with extensive
prior knowledge achieved 0.909, and 30 partici-
pants solved all instances correctly. We conclude
that the task is reasonably solvable for humans.
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Rank System Accuracy
1 GIST 0.712
2 blcu_nlp 0.606
3 ECNU 0.604
4 NLITrans 0.590
5 Joker* 0.586
6 YNU_Deep 0.583
7 mingyan 0.581
8 ArcNet 0.577
8 UniMelb 0.577

10 TRANSRW 0.570
11 lyb3b 0.568
12 SNU_IDS 0.565
13 ArgEns-GRU 0.556
14 ITNLP-ARC 0.552
15 YNU-HPCC 0.550
16 TakeLab 0.541
17 HHU 0.534
18 Random baseline 0.527
19 Deepfinder 0.525
20 ART 0.518
21 RW2C 0.500
22 ztangfdu 0.464

Table 2: Final results of the competition. For the star-
denoted system, no description has been provided.

4 Results

The final accuracies of all participating systems
are ranked in Table 2. Due to the limited size of
the test set (444 instances) and the subtle accuracy
differences of many systems, we also measured
significance using the approximate randomization
test, as described in (Riezler and Maxwell, 2005).3
Table 3 shows p-values of all system pairs, includ-
ing the random baseline. As p-values lower than
0.05 are usually considered statistically significant,
only three systems outperform the random baseline.
However, we would like to emphasize that drawing
a strong conclusion about superiority of a partic-
ular neural-based system given only one bench-
mark value might be misleading, as Reimers and
Gurevych (2017) showed for several NLP tasks.

We see that the winning system GIST signifi-
cantly outperforms all other systems on this partic-
ular test data (p < 0.05). For future SemEval tasks,
however, we encourage task organizers to solicit
multiple submissions of the same system trained
with different random initializations, and perform a
proper Bayesian system comparison. The machine
learning community has already abandoned the
controversial p-value and replaced it with Bayesian
methods that are easily interpretable and account
well for uncertainty (Benavoli et al., 2017).

3The implementation of the complete task evalu-

ation is available at https://github.com/habernal/
semeval2018-taskl2-results.
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GIST 71
blcu_nlp .00 .61
ECNU .00 1.0 .60
NLITrans .00 .59 .67 .59
YNU Deep .00 .42 .47 .85 .58
mingyan .00 39 45 80 1.0 .58
ArcNet .00 25 34 64 84 90 .58
UniMelb .00 .33 37 69 87 94 1.0 .58
TRANSRW .00 .25 .29 .55 .71 .76 .88 .87 .57
lyb3b .00 .12 .17 38 54 62 .74 80 1.0 .57
SNU_IDS .00 .13 .13 37 50 .60 .70 .74 94 1.0 .57
ArgEns-GRU .00 .09 .08 .23 .31 41 47 52 71 .71 .78 .56
ITNLP-ARC .00 .03 .05 .11 .15 21 .19 .40 .58 .47 .63 .92 .55
YNU-HPCC .00 .02 .03 .12 .17 .22 24 35 54 35 .54 86 1.0 .55
TakeLab .00 .02 .03 .09 .16 .18 .21 .28 .37 .39 42 .63 .73 .80 .54
HHU .00 .00 .01 .03 .03 .04 .04 .12 23 .10 .18 41 .39 49 .87 .53
Randombsl. .00 .03 .03 .08 .11 .13 .16 .17 .23 25 .30 42 .50 .54 .74 .89\.53\
Deepfinder .00 .00 .00 .02 .03 .04 .04 .07 .14 .06 .09 25 26 27 .64 .75|1.0].52
ART .00 .00 .00 .00 .01 .01 .01 .03 .07 .00 .04 .15 .10 .10 47 .44|.84|.83 .52
RW2C .00 .00 .00 .00 .01 .01 .01 .02 .01 .02 .03 .07 .07 .10 .20 .24|.47|.45 .58 .50
ztangfdu .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .01 .00|.07].02 .02 .24 .46

Table 3: p-values obtained by running the approximate randomization test among all systems. For convenience,
the diagonal (bold values) shows the accuracy of each system as in Table 2 but rounded to two decimal numbers.
Only the three top systems (GIST, blcu_nlp, and ECNU) are significantly better than the random baseline (p-values
< 0.05). The first system (GIST) also significantly outperforms the second system (blcu_nlp) (p-value < 0.05).

5 Analysis

First, we show a quantitative analysis of the results
on the test instances. Figure 3 displays the distri-
bution of all instances over the number of systems
that classified each of them correctly. The shape of
this rather bi-modal distribution reveals that there
are both easy and hard cases. In particular, there
are 13 instances completely unsolved and about
90 instances solved by fewer than five participat-
ing systems. On the other hand, 32 instances were
solved by all systems.

5.1 Easy instances

We qualitatively investigated instances that were
classified correctly by all participating systems. It
turned out that systems needed to learn only one sin-
gle property common to all of them: negation. Cor-
rect warrants in these instances contain negating
words (“not”, “don’t”) or negated modals (“can’t”,
“wouldn’t”), as shown in Figure 4. This artifact
originates from the process of intentionally creat-
ing the dichotomy between the alternative warrant
and warrant (see Section 2) that in many cases con-
sist of an assertion firstly created for the alternative
warrant, and its negation for the correct warrant.
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Distribution of correctly classified instances among all systems
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Figure 3: Despite many solvable instances (centered

around the right mode), there are hard cases that most
systems were not able to cope with (the left mode).

5.2 Difficult instances

A similar problem arises for the difficult instances,
such as those not solved by any system. We man-
ually analyzed them and found that the opposite
of the easy instances caused misclassification here,
namely misleading negation. In these instances,
the correct warrant is a positive assertion while the
alternative warrant is negated. It seems that the



Topic: Have Comment Sections Failed?

Additional Information: In recent years, many media com-
panies have disabled them because of widespread abuse and
obscenity.

Premise (Reason): Comment sections are just a propaganda
device.
And since

X Warrant 0: propaganda is the grease of the democratic
wheels

v/ Warrant 1: propaganda is not the grease of the demo-
cratic wheels

Claim: Comment sections have failed.

Topic: Have Christians Created a Harmful Atmosphere for
Gays?

Additional Information: Church-backed efforts to fight
L.G.B.T. rights have been blamed for feeding a hateful at-
mosphere that accommodates attacks on gays.

Premise (Reason): The Bible is not consistent in it’s treat-
ment of sex and marriage.
And since

v/ Warrant 0: many Christians take the Bible literally

X Warrant 1: many Christians do not take the Bible liter-
ally

Claim: Christians have created a harmful atmosphere for gays

Topic: Does Turkey Still Belong in NATO?

Additional Information: Given President Erdogan’s record
on human rights and how his focus on the Kurdish minority
has interfered with his fight against ISIS, is he a reliable ally?

Premise (Reason): Turkey does not have much in common
with the rest of the countries in NATO.
And since

v/ Warrant 0: diversity wouldn’t be good for NATO

X Warrant 1: diversity would be good for NATO
Claim: Turkey doesn’t belong to NATO

Topic: Is Google a Harmful Monopoly?

Additional Information: European regulators say the com-
pany’s Android phone blocks rival services.

Premise (Reason): People can choose not to use Google.
And since

v/ Warrant 0: they can opt-out from being indexed by
their search engine

X Warrant 1: they cannot opt-out from being indexed by
their search engine

Claim: Google is not a harmful monopoly

Figure 4: Examples of “easy” instances from the test
data solved by all systems, revealing that relying solely
on the negation artifact in the correct warrant gives the
right answer (IDs: 18247022_132_A104V8NZIQFN2F,
18068301_176_A3TKD7EJ6BMOMY).

learned negation “feature” then makes the systems
fall into the trap; see examples in Figure 5.

This data analysis clearly shows that it is possi-
ble to guess some answers right only given their
surface or syntactic form, perhaps because such
“features” are prevalent in the training data. How-
ever, they do not really help to find any underlying
connections between the reasons, warrants, and
claims. One solution to test for such cases would
be to double the test set simply by adding to each
instance another one with an opposite claim and
switched warrants. From the reasoning perspective,
such an instance still makes sense (which is actu-
ally a backbone principle of creating our data), but
would clearly penalize systems relying on simple
features, such as negation.

6 Conclusion

This paper has overviewed the first shared task
on argument reasoning comprehension, one of the
tasks at SemEval-2018. Being able to identify the
correct warrant connecting an argument’s reason
to its claim automatically, which is the goal of the
task, is the first step of understanding the argu-

Figure 5: Examples of “difficult” instances from the
test data on which all systems failed. One possibly ex-
planation is the misleading negation contained in these
instances (IDs: 18865357_593_A1CF6U3GF7DZEJ,
18362833_247_A1CF6U3GF7DZE]J).

ment’s reasoning. We have outlined the dataset
used in the task, the participating system, and the
performance they achieved. The results have re-
vealed how challenging the task is: Many systems
improved only little over the random baseline. At
the same time, the accuracy of GIST, the best sys-
tem in the evaluation, suggests that it is possible in
principle to identify warrants computationally.
Our analysis of the results showed that the par-
ticipating systems were capable to solve cases with
discriminative surface features, but failed where ex-
actly these were misleading. The strongest systems
relied on models trained on natural language infer-
ence corpora, which suggests that external knowl-
edge may be key to argument reasoning compre-
hension. Still, more research needs to be done in
the future to further investigate this hypothesis.
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