
Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 689–696
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

ETH-DS3Lab at SemEval-2018 Task 7: Effectively Combining Recurrent
and Convolutional Neural Networks for Relation Classification and

Extraction

Jonathan Rotsztejn1, Nora Hollenstein1,2, Ce Zhang1

1 Systems Group, ETH Zurich
{rotsztej,noraho}@ethz.ch, ce.zhang@inf.ethz.ch

2 IBM Research, Zurich

Abstract
Reliably detecting relevant relations between
entities in unstructured text is a valuable re-
source for knowledge extraction, which is why
it has awaken significant interest in the field of
Natural Language Processing. In this paper,
we present a system for relation classification
and extraction based on an ensemble of con-
volutional and recurrent neural networks that
ranked first in 3 out of the 4 subtasks at Se-
mEval 2018 Task 7. We provide detailed ex-
planations and grounds for the design choices
behind the most relevant features and analyze
their importance.

1 Introduction and related work

One of the current challenges in analyzing un-
structured data is to extract valuable knowledge
by detecting the relevant entities and relations be-
tween them. The focus of SemEval 2018 Task 7
is on relation classification (assigning a type of re-
lation to an entity pair - Subtask 1) and relation
extraction (detecting the existence of a relation be-
tween two entities and determining its type - Sub-
task 2).

Moreover, the task distinguishes between rela-
tion classification on clean data (i.e.: manually
annotated entities - Subtask 1.1) and noisy data
(automatically annotated entities - Subtask 1.2).
It addresses semantic relations from 6 categories,
all of them specific to scientific literature. Rela-
tion instances are to be classified into one of the
following classes: USAGE, RESULT, MODEL-
FEATURE, PART-WHOLE, TOPIC, COMPARE,
where the first five are asymmetrical relations and
the last is order-independent (see Gábor et al.
(2018) for a more detailed description of the task).
Since the training data was provided by the task
organizers, we focused on supervised methods for
relation classification and extraction. Similar sys-
tems in the past have been based on Support Vec-
tor Machines (Uzuner et al., 2011; Minard et al.,

60

65

70

75

80

ICC CSD OP RS WCE EN RPE PTE CRC GD WNC

%
	F
1	
sc
or
e

Added	feature

Figure 1: Feature addition study to evaluate the impact
of the most relevant features on the F1 score of the 5-
fold cross-validated training set of Subtasks 1.1 and 1.2

2011), Naı̈ve Bayes (Zayaraz et al., 2015) and
Conditional Random Fields (Sutton and McCal-
lum, 2006). More recent approaches have experi-
mented with neural network architectures (Socher
et al., 2012; Fu et al., 2017), especially convolu-
tional neural networks (CNNs) (Nguyen and Gr-
ishman, 2015; Lee et al., 2017) and recurrent neu-
ral networks (RNNs) based on LSTMs (Zheng
et al., 2017; Peng et al., 2017). The system pre-
sented in this article builds upon the latest im-
provements in employing neural networks for re-
lation classification and extraction. An overview
of the most relevant features is shown on Figure 1.

2 Method

2.1 Neural architecture

Figure 2 shows the full architecture of our system.
Its main component is an ensemble of CNNs and
RNNs. The CNN architecture follows closely on
(Kim, 2014; Collobert et al., 2011). It consists of

689



Figure 2: Full pipeline architecture

an initial embedding layer, which is followed by
a convolutional layer with multiple filter widths
and feature maps with a ReLU activation func-
tion, a max-pooling layer (applied over time) and a
fully-connected layer, that is trained with dropout,
and produces the output as logits, to which a soft-
max function is applied to obtain probabilities.
The RNN consists of the same initial embedding
layer, followed two LSTM-based sequence mod-
els (Hochreiter and Schmidhuber, 1997), one in
the forward and one in the backward direction of
the sequence, which are dynamic (i.e.: work seam-
lessly for varying sequence lengths). The output
and final hidden states of the forward and back-
ward networks are then concatenated to a single
vector. Finally, a fully-connected layer, trained
with dropout, connects this vector to the logit out-
puts, to which a softmax function is applied anal-
ogously to obtain probabilities.

The complete architecture was replicated and
trained independently several times (see Table 2)
using different random seeds that ensured dis-
tinct initial values, sample ordering, etc. in or-
der to form an ensemble of classifiers, whose out-
put probabilities were averaged to obtain the final
probabilities for each class. We analyzed and tried
several deeper and more complex neural architec-
tures, such as multiple stacked LSTMs (up to 4)

and models with 2 to 4 hidden layers, but they
didn’t achieve any significant improvements over
the simpler models. Conclusively, the strategy that
produced the best results consisted of adequately
combining the individual predictions of the single
models (see section 4).

2.2 Domain-specific word embeddings
We collected additional domain-specific data from
scientific NLP papers to train word embeddings.
All ArXiv cs.CL abstracts since 2010 (1 million
tokens) and the ACL ARC corpus (90 million to-
kens; Bird et al. (2008)) were downloaded and
preprocessed. We used gensim (Řehůřek and So-
jka, 2010) to train word2vec embeddings on these
two data sources, and additionally the sentences
provided as training data for the SemEval task
(in total: 91,304,581 tokens). We experimented
with embeddings of 100, 200 and 300 dimensions,
where 200 dimensions yielded the best perfor-
mance for the task as shown in Figure 3.

2.3 Preprocessing
Cropping sentences Since the most relevant
portion of text to determine the relation type is
generally the one contained between and including
the entities (Lee et al., 2017), we solely analyzed
that part of the sentences and disregarded the sur-
rounding words. For Subtask 2, we initially con-

690



40

45

50

55

60

65

Glove	50d Glove	200d NLP	100d NLP	200d NLP	300d

%
	F
1	
sc
or
e

Embedding	type

Figure 3: Effect of different word embedding types
based on a simple CNN classifier for Subtask 1.1

28

30

32

34

36

38

40

42

44

10 12 15 19 23

Cl
as
si
fic
at
io
n	
ac
cu
ra
cy

Max.	sentence	length

Figure 4: Effect of max. length threshold on accuracy
for a preliminary RNN-based classifier

sidered every entity pair contained within a single
sentence as having a potential relation. Since the
probability that a relation between two entities ex-
ists drops very rapidly with increasing word dis-
tance between them (see Figure 5), we only con-
sidered sentences that didn’t exceed a maximum
length threshold (see Table 2) between entities to
diminish the chances of predicting false positives
in long sentences.

Various experiments with different thresholds
between 7 and 23 words on the training set showed
that the best results on sentences from scientific
papers are achieved with a threshold of 19 words,
as shown in Figure 4.

Cleaning sentences Some of the automatically
annotated samples contained nested entities
such as <entity id=”L08-1220.16”> signal <entity
id=”L08-1220.17”> processing </entity></entity>. We
flattened these structures into simple entities and
considered all the entities separately for each train
and test instance. Moreover, all tokens between
brackets [] and parentheses () were deleted, and

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Sa
m
pl
es

Word	distance	between	entities

Figure 5: Word distance between entities in a relation
for training data in Subtask 1.1

<e> corpus <e> consists of independent <e> text <e>

<e> text <e> independent of consists <e> corpus <e>

<e> texts <e> from a <e> target corpus <e>

Resembles

REV ERSE

Figure 6: Example of a reversed sentence

the numbers that were not part of a proper noun
replaced with a single wildcard token.

Using entity tags In order to provide the neu-
ral networks with explicit cues of where an entity
started and ended, we used a single symbol, rep-
resented as an XML tag <e> before and after the
entity, to indicate it (Dligach et al., 2017).

Relative order strategy & number of classes
As mentioned in Section 1, 5 out of the 6 relation
types are asymmetrical and the tagging is always
done by using the same order for the entities as the
one found in the abstracts’ text/title. For that rea-
son, it was important to carefully devise a schema
that allowed generalization by exploiting the infor-
mation from both ordered and reversed (words that
will be treated here as antonyms) relations. Apart
from using the relative position embeddings pre-
sented by Lee et al. (2017), for Subtask 1, we in-
corporated a full text reversal of those sentences in
which a reverse relation was present, both at train-
ing and testing time. The result were instances
that, although not corresponding to a valid English
grammar, frequently resembled more in structure
to their ordered counterparts. This has been illus-
trated by an example of two instances belonging
to the PART-WHOLE class in Figure 6.

691



Thus, the system could operate by using only
the 6 originally specified relation types and merely
learn how to identify ordered relations, rather than
having to handle the two different types of pat-
terns or to add extra classes to describe both the
ordered and the reversed versions of each class,
which helped improve the overall accuracy of the
classifier (+2.0% F1).

For Subtask 2, since no information regarding
the ordering of the arguments was available (the
extraction and the ordering were part of the
task), we opted for a 12-class strategy: one for
each of the 5 ordered and reversed relations,
plus the symmetrical relation (COMPARE) and
a NONE class for the negative instances, i.e.:
those that didn’t contain any relation at all. An
alternative 6-class approach based on presenting
the sentences both ordered and reversed to the
network, computing two predictions for each and
afterwards consolidating both did not produce
good results (-3.4% F1).

Part-of-speech tags We used the Stanford
CoreNLP tagger (Manning et al., 2014) to obtain
POS tags for each word in every sentence in the
dataset and trained high-dimensional embeddings
for the 36 possible tags defined by the Penn Tree-
bank Project (Marcus et al., 1993). Moreover, the
XML tags to identify the entities and the number
wildcard received their own corresponding artifi-
cial POS tag embedding (see Figure 2 for a de-
tailed example).

3 Experiments

3.1 Exploiting provided data
One of the main challenges of the task was the
limited size of the training set, which is a com-
mon drawback for many supervised novel ma-
chine learning tasks. To overcome it, we combined
the provided datasets1 for Subtask 1.1 and 1.2 to
train the models for both Subtasks (+6.2% F1).
Furthermore, we leveraged the predictions of our
system for Subtasks 1.1 and 1.2 and added them
as training data for Subtask 2 (+3.6% F1).

3.2 Generating additional data
Due to the limited number of training sentences
provided, we explored the following approach to
augment the data: We generated automatically-
tagged artificial training samples for Subtask 1 by
combining the entities that appeared in the test

1Link to forum post 1 - Link to forum post 2

data with the text between entities and relation
labels of those from the training set (see Table
1). To evaluate the quality of the sentences and
augment our data only with sensible instances,
we estimated an NLP language model using the
KenLM Language Model Toolkit (Heafield, 2011)
on the corpus of NLP-related text described in
Section 2.2 and evaluated the generated sentences
with it. Furthermore, we set a minimum thresh-
old of 5 words for the length of the text between
entities, limited the number of sentences gener-
ated from each of them to a single instance in or-
der to promote variety, and only kept those sen-
tences that score a very high probability (-21 in log
scale) against the language model. This process
yielded 61 additional samples on the development
set (+0.7% F1).

3.3 Parameter optimization

To determine the optimal tuning for our richly pa-
rameterized models, we ran a grid search over the
parameter space for those parameters that were
part of our automatic pipeline. The final values
and evaluated ranges are specified in Table 2.

3.4 Defining the objective

The cross-entropy loss, defined as the cross-
entropy between the probability distribution out-
putted by the classifier and the one implied by
the correct prediction is one of the most widely
used objectives for training neural networks for
classification problems (Janocha and Czarnecki,
2017). A shortcoming of this approach is that
the cross-entropy loss usually only constitutes a
conveniently decomposable proxy for what the ul-
timate goal of the optimization is (Eban et al.,
2017): in this case, the macro-averaged F1 score.
Motivated by the fact that individual instances of
infrequent classes have a bigger impact on the final
F1 score than those of more frequent ones (Man-
ning et al., 2008), we opted for a weighted version
of the cross-entropy as loss function, where each
class had a weight w that was inversely propor-
tional to their frequency in the training set:

wclass i =

∑
j #class j

Nclasses ∗#class i

where # indicates the count for a certain class and
Nclasses is the total number of classes.
The weights are scaled as to preserve the expected
value of the factor ki that accompanies the loga-
rithm in the mathematical expression of the loss

692



Dev set: <e> predictive performance <e> of our <e> models <e>
Train set: <e> methods <e> involve the use of probabilistic <e> generative models <e>
New sample: <e> predictive performance <e> involve the use of probabilistic <e> models <e>

Table 1: Generated sample

Parameter Final value Experiment range
Word embedding dimensionality 200 100-300
Embedding dimensionality for part-of-speech tags 30 10-50
Embedding dimensionality for relative positions 20 10-50
Number of CNN filters 192 64-384
Sizes of CNN filters 2 to 7 2-4 to 5-9
Norm regularization parameter (λ) 0.01 0.0-1.0
Number of LSTM units (RNN) 600 0-2400
Dropout probability (CNN and RNN) 0.5 0.0-0.7
Initial learning rate 0.01 0.001-0.1
Number of epochs (Subtask 1) 200 20-400
Number of epochs (Subtask 2) 10 5-40
Ensemble size 20 1-30
Training batch size 64 32-192
Upsampling ratio (only Subtask 2) 1.0 0.0-5.0
Max. sentence length (only subtask 2) 19 7-23

Table 2: Final parameter values and their explored ranges

TOPIC-R
RESULT-R
COMPARE

RESULT
MODEL-FEAT-R
PART-WHOLE-R

TOPIC
PART-WHOLE

USAGE-R
MODEL-FEAT

USAGE
NONE

619

349

334

275

238

155

152

137

136

58

23

34,824

Figure 7: Class frequencies for Subtask 2

formula: L = −∑
kilog(yi), which is equal to

wy′i for the weighted cross-entropy and y′i for the
unweighted version, where y′i = 1 for the correct
class and yi is the predicted probability for that
class. Illustrating this concept, it can be observed
that a single instance of class TOPIC (support of
only 6 instances) could account for up to 2.8% of
the final score on the test set. This function proved
to be a better surrogate for the global final score
than the standard cross-entropy (+1.6% F1).

3.5 Upsampling

One of the challenges of our approach for Subtask
2 was the existence of a large imbalance between
the target classes. Namely, the NONE class con-
stituted the clear majority (Figure 7). To overcome
it, we resorted to an upsampling scheme for which
we defined an arbitrary ratio of positive to neg-
ative examples to present to the networks for the
combination of all positive classes (+12.2% F1).

4 Training and validating the model

The neural networks were trained using an Adam
optimizer with parameter values β2 = 0.9, β2 =
0.999, ε = 1e − 08 (suggested default values in
the TensorFlow library (Abadi et al., 2015)) with a
step learning rate decay scheme on top of it. This
consisted in halving the learning rate every 25 and
1 iterations through the whole dataset for Subtasks
1 and 2 respectively (note: the size of the upsam-
pled dataset for Subtask 2 was about 25 times that
of Subtask 1), starting from the initial value deter-
mined in Section 3.3. In order to avoid overfitting
the development set of each Subtask, we evalu-
ated the quality of our models by applying a 5-fold
cross-validation on the combined training data of
Subtasks 1.1 and 1.2 and on the training data of
Subtask 2.

693



Combining predictions During the develop-
ment, we observed that similar F1 scores could
be achieved by using either a convolutional neu-
ral network or a recurrent one separately, but the
combination of both outperformed the individual
models. Moreover, since the RNN-based architec-
ture had a tendency to obtain better results than
its CNN-based counterpart for long sequences, we
combined both predictions in such a way that a
higher weight was assigned to the RNN predic-
tions for longer sentences by applying:

wrnn,i = 0.5 + sign(si) · s2i , where

si =
lengthi −minj(lengthj)

maxj(lengthj)−minj(lengthj)
− 0.5

and lengthi is the length of the i-th sentence.

Post-processing To enforce consistency with
the text annotation scheme, some rules that were
not built into the system had to be applied ex-post.
First, predictions of reversed relations should not
be of type COMPARE, since it is the only symmet-
rical relation. When this condition occurred, we
simply predicted the class that had the 2nd high-
est probability. Second, each entity could only be
part of one relation. To address this for Subtask 2,
we run a conflict-solving algorithm that, in case of
overlaps, always preferred short relations (cf. Fig-
ure 3]) and broke ties by choosing the relation with
the most frequent class in the training data and at
random when it persisted.

5 Results

5.1 Feature analysis

We conducted a feature addition study to evalu-
ate the impact of the most relevant features on
the F1 score of the 5-fold cross-validated train-
ing/development set of Subtasks 1.1 and 1.2.

The results have been previously shown in Fig-
ure 1. It can be observed from the plot that sub-
stantial gains can be obtained by applying stan-
dalone data manipulation techniques that are in-
dependent of the type of classifier used, such as
combining the data of subtask 1.1 and 1.2 (CSD
in Figure 1), reversing the sentences (RS), gener-
ating additional data (GD) and the pre-processing
techniques from Section 2.3. Moreover, as in most
machine learning problems, appropriately tuning
the model hyperparameters also has a significant
impact on the final score.

Subtask P R F1

1.1 79.2 84.4 81.7
1.2 93.3 87.7 90.4
2.E 40.9 55.3 48.8
2.C 41.9 60.0 49.3

Table 3: Precision (P), recall (R) and F1-score (F1) in
% on the test set by Subtask

Relation type P R F1

COMPARE 100.00 95.24 97.56
MODEL-FEATURE 71.01 74.24 72.59

PART-WHOLE 78.87 80.00 79.43
RESULT 87.50 70.00 77.78
TOPIC 50.00 100.00 66.67
USAGE 87.86 86.86 87.36

Micro-averaged total 82.82 82.82 82.82
Macro-averaged total 79.21 84.39 81.72

Table 4: Detailed results (Precision (P), recall (R) and
F1-score (F1)) in % for each relation type on the test set
for Subtask 1.1

5.2 Final results
After presenting and analyzing the impact of each
system feature separately, we show the overall re-
sults in this section. The final results on the offi-
cial test set are presented on Table 3, ranking 1st
in Subtasks 1.1, 1.2 and Subtask 2.C (joint result
of classification and extraction) and 2nd for 2.E
(relation extraction only). Furthermore, Table 4
shows the differences in performance between re-
lation types for Subtask 1.1.

6 Conclusion

In this article we presented the winning system of
SemEval 2018 Task 7 for relation classification,
which also achieved the 2nd place for the relation
extraction scenario. Our system, based on an en-
semble of CNNs and RNNs, ranked first on 3 out
of the 4 Subtasks (relation classification on clean
and noisy data, and relation extraction and classi-
fication on clean data combined). We have tested
various approaches to improve the system such as
generating more additional training samples and
experimenting with different order strategies for
asymmetrical relation types. We demonstrated the
effectiveness of preprocessing the samples by tak-
ing into account their length, marking the entities
with explicit tags, defining an adequate surrogate
optimization objective and combining effectively
the outputs of several different models.

694



References
Martı́n Abadi, Ashish Agarwal, et al. 2015. Ten-

sorFlow: Large-scale machine learning on hetero-
geneous systems. Software available from tensor-
flow.org.

Steven Bird, Robert Dale, Bonnie J Dorr, Bryan Gib-
son, Mark Thomas Joseph, Min-Yen Kan, Dongwon
Lee, Brett Powley, Dragomir R Radev, and Yee Fan
Tan. 2008. The ACL anthology reference corpus: A
reference dataset for bibliographic research in com-
putational linguistics. EUROPEAN LANGUAGE
RESOURCES ASSOC-ELRA.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research,
12(Aug):2493–2537.

Dmitriy Dligach, Timothy Miller, Chen Lin, Steven
Bethard, and Guergana Savova. 2017. Neural tem-
poral relation extraction. EACL 2017, page 746.

Elad Eban, Mariano Schain, Alan Mackey, Ariel Gor-
don, Ryan Rifkin, and Gal Elidan. 2017. Scalable
learning of non-decomposable objectives. In Artifi-
cial Intelligence and Statistics, pages 832–840.

Lisheng Fu, Thien Huu Nguyen, Bonan Min, and
Ralph Grishman. 2017. Domain adaptation for re-
lation extraction with domain adversarial neural net-
work. In Proceedings of the Eighth International
Joint Conference on Natural Language Processing
(Volume 2: Short Papers), volume 2, pages 425–429.

Kata Gábor, Davide Buscaldi, Anne-Kathrin Schu-
mann, Behrang QasemiZadeh, Hafa Zargayouna,
and Thierry Charnois. 2018. SemEval-2018 Task
7: Semantic Relation Extraction and Classifica-
tion in Scientific Papers. In Proceedings of the
12th International Workshop on Semantic Evalua-
tion (SemEval-2018).

Kenneth Heafield. 2011. Kenlm: Faster and smaller
language model queries. In Proceedings of the Sixth
Workshop on Statistical Machine Translation, pages
187–197. Association for Computational Linguis-
tics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Katarzyna Janocha and Wojciech Marian Czarnecki.
2017. On loss functions for deep neural networks
in classification. arXiv preprint arXiv:1702.05659.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

Ji Young Lee, Franck Dernoncourt, and Peter
Szolovits. 2017. MIT at SemEval-2017 Task 10:
Relation Extraction with Convolutional Neural Net-
works. arXiv preprint arXiv:1704.01523.

Christopher D Manning, Prabhakar Raghavan, Hinrich
Schütze, et al. 2008. Introduction to information re-
trieval, volume 1. Cambridge university press Cam-
bridge.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Association for Compu-
tational Linguistics (ACL) System Demonstrations,
pages 55–60.

Mitchell P Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large annotated
corpus of English: The Penn Treebank. Computa-
tional linguistics, 19(2):313–330.

Anne-Lyse Minard, Anne-Laure Ligozat, and Brigitte
Grau. 2011. Multi-class SVM for relation extrac-
tion from clinical reports. In Proceedings of the In-
ternational Conference Recent Advances in Natural
Language Processing 2011, pages 604–609.

Thien Huu Nguyen and Ralph Grishman. 2015. Rela-
tion extraction: Perspective from convolutional neu-
ral networks. In Proceedings of the 1st Workshop on
Vector Space Modeling for Natural Language Pro-
cessing, pages 39–48.

Nanyun Peng, Hoifung Poon, Chris Quirk, Kristina
Toutanova, and Wen-tau Yih. 2017. Cross-sentence
n-ary relation extraction with graph LSTMs. arXiv
preprint arXiv:1708.03743.

Radim Řehůřek and Petr Sojka. 2010. Software Frame-
work for Topic Modelling with Large Corpora. In
Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks, pages 45–50, Val-
letta, Malta. ELRA. http://is.muni.cz/
publication/884893/en.

Richard Socher, Brody Huval, Christopher D Manning,
and Andrew Y Ng. 2012. Semantic compositional-
ity through recursive matrix-vector spaces. In Pro-
ceedings of the 2012 joint conference on empirical
methods in natural language processing and com-
putational natural language learning, pages 1201–
1211. Association for Computational Linguistics.

Charles Sutton and Andrew McCallum. 2006. An
introduction to conditional random fields for rela-
tional learning, volume 2. Introduction to statistical
relational learning. MIT Press.

Özlem Uzuner, Brett R South, Shuying Shen, and
Scott L DuVall. 2011. 2010 i2b2/va challenge on
concepts, assertions, and relations in clinical text.
Journal of the American Medical Informatics Asso-
ciation, 18(5):552–556.

Godandapani Zayaraz et al. 2015. Concept relation ex-
traction using naı̈ve bayes classifier for ontology-
based question answering systems. Journal of
King Saud University-Computer and Information
Sciences, 27(1):13–24.

695



Suncong Zheng, Yuexing Hao, Dongyuan Lu,
Hongyun Bao, Jiaming Xu, Hongwei Hao, and
Bo Xu. 2017. Joint entity and relation extraction
based on a hybrid neural network. Neurocomputing,
257:59–66.

696


