NLPRL-IITBHU at SemEval-2018 Task 3: Combining Linguistic Features
and Emoji Pre-trained CNN for Irony Detection in Tweets

Harsh Rangwani, Devang Kulshreshtha and Anil Kumar Singh

Indian Institute of Technology (Banaras Hindu University) Varanasi, India
{harsh.rangwani.cse15, devang kulshreshtha.cse14, aksingh.cse} @iitbhu.ac.in

Abstract

This paper describes our participation in Se-
mEval 2018 Task 3 on Irony Detection in
Tweets. We combine linguistic features with
pre-trained activations of a neural network.
The CNN is trained on the emoji predic-
tion task. We combine the two feature sets
and feed them into an XGBoost Classifier for
classification. Subtask-A involves classifica-
tion of tweets into ironic and non-ironic in-
stances, whereas Subtask-B involves classifi-
cation of tweets into non-ironic, verbal irony,
situational irony or other verbal irony. 1t is
observed that combining features from these
two different feature spaces improves our sys-
tem results. We leverage the SMOTE algo-
rithm to handle the problem of class imbal-
ance in Subtask-B. Our final model achieves
an Fl-score of 0.65 and 0.47 on Subtask-A
and Subtask-B respectively. Our system ranks
4*" on both tasks, respectively, outperforming
the baseline by 6% on Subtask-A and 14% on
Subtask-B.

1 Introduction

According to the Merriam-Webster dictionaryl,
one of the meanings of irony is defined as ‘the use
of words to express something other than and es-
pecially the opposite of the literal meaning’ (e.g.
I love getting spam emails.). Irony can have dif-
ferent forms, such as verbal, situational, dramatic
etc. Sarcasm is also categorized as a form of ver-
bal irony. Various attempts have been made in the
past for detection of sarcasm (Joshi et al., 2017).
Sarcastic texts are characterized by the presence of
humor and ridicule, which are not always present
in the case of ironic texts (Kreuz and Glucksberg,
1989). The absence of these characteristics makes
automatic irony detection a more difficult problem
than sarcasm detection.

'https://www.merriam-webster.com/
dictionary/irony

638

Irony detection is a problem that is important
for the working of many Natural Language Un-
derstanding Systems. For example, people often
use irony to express their opinions on social media
like Twitter (Buschmeier et al., 2014). Detecting
irony in social texts can aid in improving opinion
analysis.

The SemEval 2018 task 3 (Van Hee et al., 2018)
consists of two subtasks. Subtask-A involves
predicting whether a tweet is ironic or not and
Subtask-B involves categorizing a tweet into Non-
Ironic, Verbal Irony (by means of a polarity con-
trast), Situational Irony and Other Forms of Verbal
Irony. The task organizers use macro averaged F1,
rather than accuracy to force systems to optimize
to work well on all the four classes of tweets, as
described in Section 3.1.

Systems built in the past primarily used hand-
crafted linguistic features for classification of
ironic texts (Buschmeier et al. 2014; Farias et al.
2016). In our system, we try to combine them with
the pre-trained activations of a neural network.
Our results show that both types of features com-
plement each other, as the results produced by the
combination of them surpass the results of using
either the linguistic or the pre-trained activation
features individually by a large margin. We use
XGBoost Classifier (Chen and Guestrin, 2016), as
it performs at par with neural networks when the
provided training data is of small size.

Our results indicate that oversampling tech-
niques like SMOTE (Chawla et al., 2002) can also
be used to oversample the representations gen-
erated using neural networks to improve perfor-
mance on imbalanced datasets.

The rest of the paper is organized as follows:
Section 2 gives a detailed description of how our
system was built, Section 3 then describes the ex-
perimental setup and the results obtained and Sec-
tion 4 concludes the paper.

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 638—642
New Orleans, Louisiana, June 5-6, 2018. ©2018 Association for Computational Linguistics

2 Proposed Approach

For modeling irony in tweets, our system makes
use of a combination of features. These features
can be classified into two broad groups:

* Linguistic (Structure and User Behavior)
¢ Pre-trained Activations of a Neural Network.

These features were concatenated and the XG-
Boost classifier (Chen and Guestrin, 2016) was
used to perform the classification.

For subtask B, to counter the imbalance in the
dataset, which might lead classifiers to favor the
majority class in classification, we used SMOTE
for oversampling the data (Chawla et al., 2002).
Then we used XGBoost Classifier again for clas-
sification into various classes.

The details of the classifier parameters are pro-
vided in Section 2.2. Basic preprocessing of
tweets was performed before feature extraction,
which involved removing hash symbols C'#’), con-
verting contractions (‘doesn’t’ to ‘does not’), re-
moving links and quotations and normalizing the
text into lower case. We will explicitly mention
those features whose extraction require the origi-
nal tweets.

2.1 Feature Extraction

Our system generates a 72-dimensional hand-
crafted feature vector, based on the linguistic
structure and user behavior. We then combine
this with a 2304 dimensional feature vector gener-
ated using activations of a pre-trained CNN. The
combined features are categorized into 11 broad
classes:

Contrast Based Features: Contrast of senti-
ments is a feature that has been observed in sarcas-
tic and ironic texts (Rajadesingan et al., 2015), e.g.
I love being ignored #not. For capturing contrast,
we use the affect score of lemmas (Warriner et al.,
2013) and the sentiment score of words based on
SentiStrength (Thelwall et al., 2010). The final
feature vector consists of:

* The difference between the highest and low-
est sentiment values of the words present in
the tweet. (1 feature)

* The difference between the highest and low-
est affect scores of the words present in the
tweet. (1 feature)

639

* Longest unimodal sequence size and the
number of transitions of sentiment polarity.
(2 features)

* Sum of sentiment scores and counts of posi-
tive and negative n-grams. (4 features)

Readability Based Features: Ironical texts are
usually complex, and hence we use the total num-
ber of syllables in the tweet, along with number of
words that contain polysyllables as features. Ac-
cording to Automated Readability Index (Senter
and Smith, 1967), the standard deviation, the av-
erage and the median of the word length serve as
indicators of the complexity of the text (Rajadesin-
gan et al., 2015).

Incongruity of Context: Ironic similes are
common in literature (e.g. as clear as mud in
which both clear and mud are sentiment neu-
tral words.). Due to this neutrality, the lexicon
based methods are unable to capture the incon-
gruity present. Therefore, maximum and mini-
mum GloVe (Pennington et al., 2014) cosine sim-
ilarity between any two words in a tweet are used
as features in our system (Joshi et al., 2016).

Repetition-based Features: Users often
change their writing style to depict sarcasm
and irony, which is analogous to the change of
tone in speech while expressing sarcasm, e.g.
Loooovvveeeeeee when my phone gets wiped.
We use the count of of words with repetitive
characters and the count of ‘senti words’ (senti-
ment score > 2 and sentiment score < -2) with
repetitive characters as our features (Rajadesingan
et al., 2015).

Punctuation-based Features: Punctuation
counts can sometimes serve as an indicator of
ironic texts (Kreuz and Caucci, 2007). We use the
counts of characters like hashtag (#), ellipsis (...),
exclamation mark (!), question mark (?), colon (:),
quote () and apostrophe (*) in a tweet as features.

Presence of Markers: Discourse markers are
certain words that help in expressing ideas and
performing specific functions (Farias et al., 2016).
Our system uses a curated list of discourse mark-
ers. Similar to the list of discourse markers, we
also use a list of intensifiers (e.g. heck), laughter
words (e.g. Imao, lol etc.), interjections (e.g. oops)
and swear words (e.g. shit) as their appearance in
a tweet indicates the presence of unexpectedness,
which can, in turn, serve as an indicator of irony.
We use counts of these different types of words
separately as features.

Word Count Features: According to (2016),
ironic tweets depict their content in fewer words
compared to normal tweets. Hence we use the
word count of tweets as a feature. Apart from the
word count, (Kreuz and Caucci, 2007) suggest that
the counts of adjectives and adverbs can also be
used as markers of ironic content. We also use the
preposition count as a separate feature.

Semantic Similarity: Ironic tweets that span
multiple lines are often found to have lines that are
very much semantically dissimilar to each other
(Farias et al., 2016). We use the WordNet based
similarity function (Mihalcea et al., 2006) avail-
able online” to obtain a similarity score, which is
used as a feature.

Polarity and Subjectivity: Ironic texts are usu-
ally subjective and often convey something nega-
tive (or positive) about the target (Wallace et al.,
2015). We use the Polarity and Subjectivity Scores
(Sentiment Score) generated using TextBlob as
features in our model (Loria et al., 2014).

URL Counts: We observed in the training set
that users often used irony to express their opinion
about online content, e.g. blogs, images, tweets,
etc. For specifying the context of a comment
(tweet), they often add a URL to the original con-
tent. So we used the counts of URLs in a tweet
as a feature. Our system requires raw tweets for
extracting this feature.

Apart from the above features, we also experi-
mented with Named Entity Count and occurrence
of popular hashtags like (#hypocrisy), using a cu-
rated list, as our features (Van Hee, 2017).

2.1.1 Pre-trained CNN Features

Apart from extracting linguistic features from
tweets, we leverage the activations of a Convo-
lutional Neural Network (CNN) pre-trained on
emoji prediction task. We use DeepMoji> (Felbo
et al.,, 2017), a model trained on 1.2 billion
tweets with emojis, and tested on eight bench-
mark datasets within sentiment, emotion and sar-
casm detection. Since sarcasm is a form of verbal
irony that expresses ridicule or contempt (Long
and Graesser, 1988), we believe transferring the
knowledge of CNN trained on sarcasm can im-
prove the results of Irony Detection task.

Each tweet is converted into a 2304-
dimensional feature vector by feeding into

Mttp://nlpforhackers.io/
wordnet-sentence-similarity/
Shttps://github.com/bfelbo/DeepMoii

640

DeepMoji-CNN and extracting activations of the
last hidden layer.

2.2 Classifiers

We construct XGBoost (Chen and Guestrin, 2016)
feature-based classifiers for irony detection using
the above features. Based on the 10-fold cross val-
idation performance, the best performing parame-
ters prove to be the default parameters used by the
XGBoost Classifier Package *.

2.3 Handling Class Imbalance

The data provided for subtask-B is highly skewed.
To perform well on every class of irony, we used
an oversampling technique (SMOTE (Chawla
et al., 2002)). In SMOTE, for generating a new
synthetic sample, from the k-nearest neighbors of
an instance, one is chosen at random, and a new
sample is generated on the line joining the instance
and the chosen neighbor. We use the SMOTE
implementation available in imblearn (Lemaitre
et al.,, 2017) package for our system, with k-
neighbors equal to 5.

3 Experiments and Evaluation

3.1 Dataset and Metrics

The annotated tweet corpus provided for training
consists of 1390 instances of Verbal Irony due to
polarity contrast, 205 instances of Other Types of
Verbal Irony, 316 Situational Ironic instances, and
1923 Non Ironic instances. Our system only uses
the training data provided by the organizers and no
other annotated data is used (Constrained System).

The test dataset for Subtask-A contains 473
non-ironical tweets and 311 ironical tweets. For
Subtask-B, the 311 ironical tweets are further clas-
sified into Verbal Irony by means of Polarity Con-
trast (164), Situational Irony (85) and Other Forms
Of Verbal Irony (62).

The evaluation metric used for ranking teams in
Sub-task A is the F1 score of the positive (Ironic)
class whereas in Subtask-B, the organizers use
macro averaged F1 (average of F1 for each class)
as an evaluation metric for ranking teams.

3.2 Results and Discussion

We present the results achieved by our approaches,
as well as the combination of our methods in Ta-
ble 1. Our final submitted systems are: (Linguistic

*http://xgboost.readthedocs.io/en/
latest/parameter.html

Approach _ Task-A _ Task-B
Precision | Recall | Fl-score | Precision | Recall | F1-score
Linguistic 0.48 0.78 0.59 0.32 0.36 0.30
Pretrained CNN 0.60 0.63 0.62 0.51 0.44 0.42
Linguistic + Pretrained CNN 0.55 0.79 0.65 0.53 0.44 0.42
Linguistic + Pretrained CNN + SMOTE - - - 0.46 0.51 0.47
Baseline (Linear SVC over BoW) 0.56 0.63 0.59 0.48 0.36 0.33

Table 1: F1 scores in Task A and Macro F1 in Task B on test set.

+ Pretrained CNN) for Task-A and (Linguistic +
Pretrained CNN + SMOTE) for Task-B. We dis-
cuss the major takeaways from the results below.

* Our submitted models achieve 4th position
in public leaderboard > on both Task-A and
Task-B and beat the task baselines by about
6% and 14%, respectively, on both tasks on
the test set.

* Leveraging DeepMoji model for Irony detec-
tion domain yields a considerable improve-
ment over purely linguistic features (0.03 and
0.12). This is because the model is trained
on over a billion tweets on sarcasm and four
other domains. As stated earlier, sarcasm is
a verbal form of irony (Long and Graesser,
1988), and transfer learning works as do-
mains are quite similar.

* Our combination of linguistic features with
pre-trained CNN achieves an F-score of 0.65
and 0.42, with an improvement of at least
0.03 on Task-A and significant improvement
in Task-B, compared to linguistic features.
The higher accuracy points to the power of
ensemble learning by combining different
feature spaces, as both feature sets specialize
in different types of tweets.

* The use of SMOTE oversampling technique
leads to an F-score of 0.47 in Task-B, which
is an improvement of 0.05 over (Linguistic +
Pretrained CNN) model.

* The improvement in scores due to linguistic
features are not as pronounced in Subtask-B,
as compared to Subtask-A. One of the possi-
ble reasons for this is that linguistic features
are not able to capture the fine grained differ-
ences between different forms of irony.

‘https://competitions.codalab.org/
competitions/17468#results

4 Conclusion

We reported the use of handcrafted features and
pre-trained CNN activations for predicting the
irony in tweets. We implemented a variety of fea-
tures based on user behavior as well as the lin-
guistic structure in a tweet. We further exploit
the SMOTE oversampling technique to handle the
class imbalance problem in Subtask-B, which in-
volves categorizing a tweet into Non Ironic, Verbal
Irony, Situational Irony and Other Verbal Irony.
We then feed the features into XGBoost classifier
for both the tasks. The benefit of using CNN mod-
els pre-trained on sarcasm, sentiment, and emotion
domains can be clearly seen, yielding an improve-
ment of 3% and 9% over task baselines. Our final
submitted system stood 4" in both the subtasks in
the SemEval 2018 shared task on “Irony Detection
in English Tweets”.

References

Konstantin Buschmeier, Philipp Cimiano, and Roman
Klinger. 2014. An impact analysis of features in a
classification approach to irony detection in prod-
uct reviews. In Proceedings of the 5th Workshop
on Computational Approaches to Subjectivity, Sen-
timent and Social Media Analysis, pages 42—49.

Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall,
and W Philip Kegelmeyer. 2002. Smote: synthetic
minority over-sampling technique. Journal of artifi-
cial intelligence research, 16:321-357.

Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A
scalable tree boosting system. In Proceedings of the
22nd acm sigkdd international conference on knowl-
edge discovery and data mining, pages 785-794.
ACM.

Delia Iraza Hernandez Farias, Viviana Patti, and Paolo
Rosso. 2016. Irony detection in twitter: The role
of affective content. ACM Transactions on Internet
Technology (TOIT), 16(3):19.

Bjarke Felbo, Alan Mislove, Anders Sggaard, Iyad
Rahwan, and Sune Lehmann. 2017. Using millions
of emoji occurrences to learn any-domain represen-
tations for detecting sentiment, emotion and sar-
casm. arXiv preprint arXiv:1708.00524.

641

Aditya Joshi, Pushpak Bhattacharyya, and Mark J Car-
man. 2017. Automatic sarcasm detection: A survey.
ACM Computing Surveys (CSUR), 50(5):73.

Aditya Joshi, Vaibhav Tripathi, Kevin Patel, Pushpak
Bhattacharyya, and Mark Carman. 2016. Are word
embedding-based features useful for sarcasm detec-
tion? arXiv preprint arXiv:1610.00883.

Roger J Kreuz and Gina M Caucci. 2007. Lexical in-
fluences on the perception of sarcasm. In Proceed-
ings of the Workshop on computational approaches
to Figurative Language, pages 1-4. Association for
Computational Linguistics.

Roger J Kreuz and Sam Glucksberg. 1989. How to
be sarcastic: The echoic reminder theory of verbal
irony. Journal of experimental psychology: Gen-
eral, 118(4):374.

Guillaume Lemaitre, Fernando Nogueira, and Chris-
tos K. Aridas. 2017. Imbalanced-learn: A python
toolbox to tackle the curse of imbalanced datasets
in machine learning. Journal of Machine Learning
Research, 18(17):1-5.

Debra L Long and Arthur C Graesser. 1988. Wit
and humor in discourse processing. Discourse pro-
cesses, 11(1):35-60.

Steven Loria, P Keen, M Honnibal, R Yankovsky,
D Karesh, E Dempsey, et al. 2014. Textblob: simpli-
fied text processing. Secondary TextBlob: Simplified
Text Processing.

Rada Mihalcea, Courtney Corley, Carlo Strapparava,
et al. 2006. Corpus-based and knowledge-based
measures of text semantic similarity. In AAAI, vol-
ume 6, pages 775-780.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532-1543.

Ashwin Rajadesingan, Reza Zafarani, and Huan Liu.
2015. Sarcasm detection on twitter: A behavioral
modeling approach. In Proceedings of the Eighth
ACM International Conference on Web Search and
Data Mining, pages 97-106. ACM.

RJ Senter and Edgar A Smith. 1967. Automated
readability index. Technical report, CINCINNATI
UNIV OH.

Mike Thelwall, Kevan Buckley, Georgios Paltoglou,
Di Cai, and Arvid Kappas. 2010. Sentiment strength
detection in short informal text. Journal of the As-
sociation for Information Science and Technology,

61(12):2544-2558.

Cynthia Van Hee. 2017. Can machines sense irony? :
exploring automatic irony detection on social media.
Ph.D. thesis, Ghent University.

642

Cynthia Van Hee, Els Lefever, and Véronique Hoste.
2018. SemEval-2018 Task 3: Irony Detection in
English Tweets. In Proceedings of the 12th Interna-
tional Workshop on Semantic Evaluation, SemEval-
2018, New Orleans, LA, USA. Association for
Computational Linguistics.

Byron C Wallace, Eugene Charniak, et al. 2015.
Sparse, contextually informed models for irony de-
tection: Exploiting user communities, entities and
sentiment. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
volume 1, pages 1035-1044.

Amy Beth Warriner, Victor Kuperman, and Marc Brys-
baert. 2013. Norms of valence, arousal, and dom-
inance for 13,915 english lemmas. Behavior re-
search methods, 45(4):1191-1207.

