
Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 633–637
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

SSN MLRG1 at SemEval-2018 Task 3: Irony Detection in English Tweets
Using MultiLayer Perceptron

Rajalakshmi S, Angel Deborah S, S Milton Rajendram, Mirnalinee T T
SSN College of Engineering

Chennai 603 110, Tamil Nadu, India
rajalakshmis@ssn.edu.in, angeldeborahs@ssn.edu.in

miltonrs@ssn.edu.in, mirnalineett@ssn.edu.in

Abstract

Sentiment analysis plays an important role in
E-commerce. Identifying ironic and sarcastic
content in text plays a vital role in inferring the
actual intention of the user, and is necessary
to increase the accuracy of sentiment analy-
sis. This paper describes the work on iden-
tifying the irony level in twitter texts. The
system developed by the SSN MLRG1 team
in SemEval-2018 for task 3 (irony detection)
uses rule based approach for feature selection
and MultiLayer Perceptron (MLP) technique
to build the model for multiclass irony classi-
fication subtask, which classifies the given text
into one of the four class labels.

1 Introduction

Humans have the natural ability to identify the
sentiment or the irony intended in a review or com-
ment. However, identifying the intention of the
user is a difficult task for the machine. Detecting
irony present in a text is critical to sentiment anal-
ysis since it will inverse the polarity of the senti-
ment inferred (Hernandez-Farias et al., 2015).

Choice of shops, books, movies, hotels and var-
ious other services and products is influenced by
comments and reviews in social media to a large
extent. Huge amount of data is available in the
Internet about the choices people make and their
reviews about it.

Irony in texts affects the polarity of the senti-
ment inferred from them. Since it gives the text a
meaning that is just the opposite to what is actu-
ally said, it is called as a polarity reverser (Farias
et al., 2016). Irony is studied in various disci-
plines such as linguistics, philosophy and psychol-
ogy. Due to the frequent use of irony in social
media, its detection has gained importance in nat-
ural language processing, which faces difficulty
in achieving a high performance (Liu, 2012; Wal-
lace, 2015). The potential applications of irony

detection include text mining, author profiling, de-
tecting online harassment and sentiment analysis
(Van Hee et al., June 2018). SSN MLRG1 team
has already worked in sentiment analysis tasks
conducted in SemEval 2017 (Angel Deborah et al.,
2017a,b).

We can identify three types irony namely verbal
irony, situational irony and dramatic irony. Sub-
task B in task 3 is a multiclass classification task
for classifying a given tweet to one of these four
classes:

1. verbal irony realized through a polarity con-
trast,

2. verbal irony without such a polarity contrast,
3. situational irony, and
4. non-irony.

2 Related Work

Unlike factual information, sentiment analysis and
opinion mining have to deal with subjective infor-
mation. Consequently, for any problem, it is im-
portant to analyze opinions collected from many
people and summarize them. Social and political
discussions are much harder due to complex topic
and sentiment expressions, instances of sarcasm
and irony (Liu, 2012). Maynard and Greenwood
(2014) discusses the need for analyzing sarcasm
in social media. They have developed a hash-
tag tokenizer for GATE (General Architecture for
Text Engineering) tool and detected the sentiments
and sarcasm in hashtags. Ghosh and Veale (2016)
have found deep neural networks to perform better
compared to Support Vector Machines (SVM) for
sarcasm detection. Hernandez-Farias et al. (2015)
have used MLP for automatic irony detection us-
ing the basic features from sentiment analysis and
observed that MLP yields better results, compared
to Naive Bayes, decision trees, maximum entropy
and SVM. Barbieri and Saggion (2014) have used

633



random forest and decision tree for analyzing the
irony and humour content in twitter dataset using
Weka tool. They have used seven features for de-
tecting imbalance, unexpectedness and common
patterns.

3 System Overview

The system consists of the following modules:
data extraction, preprocessing, rule based feature
selection, feature vector generation and multilayer
perceptron for classification.

3.1 Feature Engineering and Implementation

The dataset is cleaned and processed using func-
tions from NLTK toolkit. We identified the key-
words for irony detection using rule based feature
selection. The selected features are formed into
a Bag of Words (BoW) dictionary. For each sen-
tence, feature vectors are generated by one-hot en-
coding method, using the sentence keywords and
BoW dictionary. The feature vectors are given
to the MLP and output class label is predicted.
Error is calculated and backpropagated to update
the weight vectors. Nadam (Nesterov-accelerated
Adaptive Moment Estimation) algorithm is used
for optimization.

The procedure for data preprocessing is out-
lined in Algorithm 2:
Algorithm 2: Data preprocessing.
Input: Input dataset.
Output: Tokenized words and their parts of
speech.
begin

1. Separate labels and sentences.
2. Perform tokenization using

word tokenize function of the NLTK
toolkit.

3. Perform Parts of Speech tagging using
pos tag function from the NLTK toolkit.

4. Return the tokenized words and their parts of
speech which will be given as inputs to rule
based feature selection.

end
The procedure for rule based feature selection

and feature vector generation is outlined in Algo-
rithm 3:
Algorithm 3: Rule based feature selection and
feature vector generation
Input: Tokenized words and their parts of speech.
Output: BoW feature representation with labels.
begin

For each of the tokenized words, falling under
one of the categories listed in Table 1, do the fol-
lowing steps.

1. Lemmatize the word using WordNet
Lemmatizer from the NLTK toolkit.

2. Insert the lemmatized word into the dictio-
nary.

3. Represent each sentence as a feature vector
using one-hot encoding by looking up the
dictionary.

4. Store the corresponding label in target vector
using one-hot encoding.

5. Return the feature vector generated as the in-
put to build the model.

end

Abbreviation Parts of Speech
VB verb, base form
VBZ verb, 3rd person sing. present
VBP verb, non 3rd sing. present
VBD verb, past tense
VBG verb, gerund/present participle
VBN verb, past participle
JJ adjective
JJR adjective, comparative
JJS adjective, superlative
RB adverb
RBR adverb, comparative
RBS adverb, superlative
NN noun, singular
NNP proper noun, singular
NNS noun plural
NNPS proper noun, plural

Table 1: Parts of speech categories.

The procedure for building Multilayer Percep-
tron is outlined in Algorithm 4:
Algorithm 4: Build a Multilayer Perceptron
model.
Input: BoW feature representation with labels.
Output: Learned model.
begin

1. Prepare the training dataset. XTrain con-
tains the feature vectors and YTrain con-
tains the target labels for irony class.

2. Build the classification model which com-
prises an input layer, two hidden layers and
an output layer with relu activation func-
tion in the hidden layers and softmax acti-
vation function in the output layer.

634



3. Optimize the classification model using
nadam optimizer of keras package for
some n iterations.

4. Return the learned model.
end

For the test dataset, preprocessing is done and
the feature vectors are generated from the training
data BoW representation. The feature vectors are
given as input to the learned model and the pre-
dicted output labels are stored.

3.2 MultiLayer Perceptron

MLP is a feedforward artificial neural network for
supervised learning. MLP can be used for both
classification and regression tasks. It consists of
an input layer, one or more hidden layers and an
output layer. Each neuron in one layer is fully
connected to the neurons in next layer. Number of
neurons in the output layer depends on the number
of class labels in the given problem.

Each connection has a weight assigned to it.
Output of each neuron is calculated by applying
an activation function on the weighted sum of the
inputs. Some of the common activation functions
are linear, sigmoid, tanh, elu, softplus, softmax,
relu, relu6, crelu, selu and relu x.

Error value is calculated from the value pre-
dicted by the output layer and the actual class la-
bel. This error value is backpropagated and the
weights and biases are updated. This procedure is
repeated for the feature vectors of each input sen-
tence. The whole procedure is repeated for some
n iterations or until the error value converges to a
value below a threshold.

Figure 1 depicts a simple MLP model, consist-
ing of a single hidden layer. It takes four inputs
and produces one output.

Output layerInput layer

Input1

Input2

Input3

Output1

Output2

Hidden layer

Figure 1: Multilayer Perceptron.

The working of Multilayer Perceptron model is
outlined in Algorithm 1:
Algorithm 1: Multilayer Perceptron.
Input: Feature vectors and targets.
Output: Learned model.
begin

1. Initialize the weights with random values and
choose a learning rate η.

2. Repeat steps 3 to 6 until the neural network
is trained.

3. For each input example (feature vector, tar-
get), do steps 4 to 6.

4. Forward Pass
(a) For each neuron of a layer, find the

weighted sum of the input vectors. Ap-
ply the activation function and pass the
outputs as inputs to the next layer.

(b) Predict the value in the output layer.
5. Backward Pass

(a) Compute the error∇ between the actual
target and the predicted class.

(b) Backpropagate the error and compute
the error in all hidden layer neurons.

6. Update all the weights ∆wij and biases bij
by gradient descent technique.

7. Return the learned model.

end

4 Dataset

The dataset consists of 4792 English tweets that
are collected between 01/12/2014 and 04/01/2015
from 2676 unique users. The entire corpus is split
into training (80%) and test (20%) sets. The tweets
are manually labeled using a fine grained annota-
tion scheme for irony (Van Hee et al., 2016). The
training dataset is further divided into training set
and development test set for system building.

5 Performance Evaluation

The performance of the system is measured using
accuracy, precision, recall and F1-score, using
formulas shown in Equations 1 to 4.

635



Accuracy (A) =
TP + TN

N
(1)

Precision (P) =
TP

TP + FP
(2)

Recall (R) =
TP

TP + FN
(3)

F1 score = 2× Precision× Recall
Precision + Recall

(4)

where TP denotes True Positive, TN denotes True
Negative, FP denotes False Positive, FN denotes
False Negative and N denotes total number of
tweets.

The optimization of the model was performed
using different gradient descent algorithms such
as SGD, adam, adaGrad, RMSProp and nadam.
Adam and nadam are the widely used optimiz-
ers. Adam (Adaptive Moment Estimation) com-
putes the adaptive learning rates using momentum
and RMSProp. Momentum points the model in
the best direction, while RMSProp adapts how far
the model goes in that direction on parameter ba-
sis. Nadam combines Nesterov momentum with
Adam which is superior to momentum. (Dozat,
2016).

We split the training set into training set (80%)
and development test set (20%). The different op-
timization algorithms were used with the model
and nadam optimizer produced better results com-
pared to other algorithms for the development test
set.

There are 32 submissions for this particular
task. The model has achieved the following val-
ues for the various measures as listed in Table 2.

Measure Value Ranking
Accuracy 0.5727 15
Precision 0.3484 21
Recall 0.3609 19
F1-Score 0.3337 20

Table 2: Performance.

From the result, it appears as if the basic text
features selected by rule based approach is not
enough to detect the irony level in the given text.
Additional features like emoticons and hashtags

can be added to the feature set to enhance the per-
formance.

6 Conclusion

We built a basic MLP to detect the irony level in
twitter text, which has an input layer, two hidden
layers with 128 and 64 neurons, and an output
layer with 4 neurons for the four class labels. Relu
activation function was used in both hidden lay-
ers and softmax activation function in output layer.
The various optimizers such as SGD, RMSprop,
adam, adagrad, and nadam were tried. Nadam op-
timizer performed better than others.

The text features were taken into consideration
for BoW representation. Since irony renders an
opposite meaning to the text, it is difficult to detect
the irony from the text features alone. The system
performance can be enhanced with the emoticon
and hashtag information. The performance can
also be improved by doing tweet normalization be-
fore the feature selection. The accuracy of system
can be increased by using deep neural networks
such as Convolutional Neural Network (CNN) or
Recurrent Neural Network (RNN). Feature selec-
tion techniques can be enhanced with semantics
and lexicon information.

References
S Angel Deborah, S Milton Rajendram, and T T Mir-

nalinee. 2017a. Ssn mlrg1 at semeval-2017 task
4: Sentiment analysis in twitter using multi-kernel
gaussian process classifier. In Proceedings the 11th
International Workshop on Semantic Evaluation
(SemEval-2017), pages 709–712. ACL,Vancouver,
Canada.

S Angel Deborah, S Milton Rajendram, and T T Mir-
nalinee. 2017b. Ssn mlrg1 at semeval-2017 task
5: Fine-grained sentiment analysis using multiple
kernel gaussian process regression model. In Pro-
ceedings the 11th International Workshop on Se-
mantic Evaluation (SemEval-2017), pages 823–826.
ACL,Vancouver, Canada.

Francesco Barbieri and Horacio Saggion. 2014. Auto-
matic detection of irony and humour in twitter. In
ICCC, Fifth International Conference on Computa-
tional Creativity, Ljubljana, Slovenia, 9th 13th June
2014, pages 155–162.

Timothy Dozat. 2016. Incorporating nesterov momen-
tum into adam. In Workshop track - ICLR 2016.

Delia Irazu Hernandez Farias, Viviana Patti, and Paolo
Rosso. 2016. Irony detection in twitter: The role
of affective content. ACM Transactions on Internet
Technology (TOIT), 16(3):19.

636



Aniruddha Ghosh and Tony Veale. 2016. Fracking
sarcasm using neural network. In Proceedings of
the 7th Workshop on Computational Approaches to
Subjectivity, Sentiment and Social Media Analysis,
pages 161–169.

Irazu Hernandez-Farias, Jose-Miguel Benedi, and
Paolo Rosso. 2015. Applying basic features from
sentiment analysis for automatic irony detection. In
Iberian Conference on Pattern Recognition and Im-
age Analysis, pages 337–344. Springer.

Bing Liu. 2012. Sentiment analysis and opinion min-
ing. Synthesis lectures on human language tech-
nologies, 5(1):1–167.

Diana Maynard and Mark A Greenwood. 2014. Who
cares about sarcastic tweets? investigating the im-
pact of sarcasm on sentiment analysis. In Lrec,
pages 4238–4243.

Cynthia Van Hee, Els Lefever, and Veronique Hoste.
2016. Guidelines for annotating irony in social me-
dia text. Technical report, version 2.0. Technical Re-
port 16-01, LT3, Language and Translation Technol-
ogy Team–Ghent University.

Cynthia Van Hee, Els Lefever, and Veronique Hoste.
June 2018. Semeval-2018 task 3: Irony detec-
tion in english tweets. In In Proceedings of the
12th International Workshop on Semantic Evalua-
tion (SemEval-2018), New Orleans, LA, USA.

Byron C Wallace. 2015. Computational irony: A sur-
vey and new perspectives. Artificial Intelligence Re-
view, 43(4):467–483.

637


