Binarizer at SemEval-2018 Task 3: Parsing dependency and deep learning
for irony detection

Nishant Nikhil
IIT Kharagpur
Kharagpur, India

nishantnikhil@iitkgp.ac.in

Abstract

In this paper, we describe the system submit-
ted for the SemEval 2018 Task 3 (Irony de-
tection in English tweets) Subtask A by the
team Binarizer. Irony detection is a key task
for many natural language processing works.
Our method treats ironical tweets to consist
of smaller parts containing different emotions.
We break down tweets into separate phrases
using a dependency parser. We then embed
those phrases using an LSTM-based neural
network model which is pre-trained to predict
emoticons for tweets. Finally, we train a fully-
connected network to achieve classification.

1 Introduction

The micro-blogging site Twitter has created an
abundance of data about opinions and sentiments
regarding almost every aspect of daily life. A
deeper study of the public opinion can be ob-
tained by applying natural language processing
techniques on this data. However, the performance
of these NLP models is detrimentally affected by
irony (Pozzi et al., 2016). As per the Oxford En-
glish Dictionary, irony is the expression of one’s
meaning by using language that normally signi-
fies the opposite, typically for humorous or em-
phatic effect. This deviation between what is said
and what is intended makes irony hard to detect.
Being a platform where users are free to commu-
nicate and express themselves colloquially, Twit-
ter generates considerable data injected with irony.
Studying this would provide us with a better sen-
timent analysis of these tweets.

Prior work on irony detection includes the
use of unigrams and emoticons (Gonzalez-Ibanez
et al., 2011; Carvalho et al., 2009; Barbieri et al.,
2014). Maynard and Greenwood (2014) describe
an unsupervised pattern mining approach where
the sentiment of the hashtag in the tweet is pro-
posed to be a key indicator of sarcasm. If the sen-
timent of the tweet does not match the sentiment

628

Muktabh Mayank Srivastava
ParallelDots, Inc.
muktabh@paralleldots.com

of the hashtag, it is predicted to be sarcastic. Riloff
etal. (2013) illustrates a semi-supervised approach
where rule-based classifiers are used to look for
negative situation phrases and positive verbs in a
sentence. Tsur et al. (2010) build pattern-based
features that detect the presence of discriminative
patterns as extracted from a large sarcasm-labelled
corpus. N-gram-based approaches have also been
used (Davidov et al., 2010; Ptacek et al., 2014,
Joshi et al., 2015) with sentiment features. Joshi
et al. (2017) use similarity between word embed-
dings as feature and Poria et al. (2016) use con-
volutional neural networks to extract sentiment,
emotion and personality features for sarcasm de-
tection.

SemEval-2018 Task 3 (the 12th workshop on
semantic evaluation) specifies two subtasks in
relation to irony detection in English tweets
(Van Hee et al., 2018). In subtask A the goal was
to train a binary classifier that detects whether a
given tweet is ironic or not. Subtask B was a
multi-class classification problem where four la-
bels were specified to describe the nature of irony
(verbal irony by means of a polarity contrast, sit-
uational irony, other verbal irony, and non-ironic).
The goal was to assign one of the four labels to
each tweet.

We propose a new method which considers
ironical tweets to be collections of smaller parts
containing different emotions. We break down
tweets into these collections using a dependency
parser and embed them using DeepMoji (Felbo
et al., 2017) which is pre-trained to predict emoti-
cons for tweets. Finally we train a classifier to
detect irony. The paper is organized as follows:
We discuss our methods in section 2. Section 3
contains the details about the experiments and the
training data. In Section 4 we discuss the results
and Section 5 concludes the paper with closing re-
marks.

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 628—632
New Orleans, Louisiana, June 5-6, 2018. ©2018 Association for Computational Linguistics

2 Method

In order to identify the chunks of various emotions
in an ironic tweet, we split the tweets into phrases
using a dependency parser. We use Tweeboparser
(Kong et al., 2014), which is a dependency parser
for English tweets. The parser is trained on a sub-
set of a labelled corpus for 929 tweets (12,318 to-
kens) drawn from the POS-tagged tweet corpus of
Owoputi et al. (2013), Tweebank. TweeboParser
predicts the syntactic structure of the tweet repre-
sented by unlabelled dependencies. Tweets con-
tain multiple sentences or fragments called “utter-
ances” each with their own syntactic root discon-
nected from the others. Since a tweet often con-
tains more than one utterance, the output of Twee-
boParser will often be a multi-rooted graph over
the tweet. Also, many elements in tweets have no
syntactic function. These include, in many cases,
hashtags, URLs, and emoticons. TweeboParser at-
tempts to exclude these tokens from the parse tree.
For our purpose, we club the words arising from
the same root to create a phrase. Multiple roots
would create multiple phrases. As we can see from
Figure 1, these phrases can convey the different
sentiments attached to the different subjects of the
tweet.

Sweet United Nations video. Just in time for Christmas. #imagine #NoReligion http://t.co/fej2v30UBR

After clubbing words having the
same root from the output of
TweeboParser

<
\ //
\/

Sweet United Nations video ‘ ‘Just in time for Christmas‘ .. #imagine #NoReligion http://t.co/fej2v30UBR

But instead, I'm scrolling through Facebook, Instagram, and Twitter for hours on end, accomplishing nothing,|

After clubbing words having the
same root from the output of
TweeboParser

Figure 1: Parser results

After extracting a set of phrases for the sen-
tence, we embed the phrases into vectors. We
used the DeepMoji (Felbo et al., 2017) model,
which is trained on 1.2 billion tweets with emo-
jis to understand how language is used to express
emotions. It encodes the provided phrase into a
2,304-dimensional feature vector. Under the hood,
DeepMoji model projects each word into a 256-
dimensional vector space followed by a hyperbolic

629

Dimensionality >

>
;/;,‘

0
G

()
W

T
{ \\"s

\\V

2304*9 > 2304*4 —)> 2304) 256) 2

Figure 2: Neural network architecture

tangent activation function. After this, two bidi-
rectional LSTMs with 1,024 hidden units each are
used to capture the context of each word. Fi-
nally, the model uses skip connections from each
layer to an attention layer and hence the attention
layer outputs a 2,304 (256+1,024+1,024) dimen-
sional vector. Now this 2,304-dimensional output
is connected to a softmax layer for classification.
We did not use the final softmax layer but took
the 2,304-dimensional vector for each phrase. As
the model was trained for prediction of emoticons,
this feature vector contains information about the
semantic and sentimental content of the phrases.
To make the predictions we need to account for
the sentiment behind every utterance. To this end,
we concatenate these vectors and pass the result-
ing concatenated vector through a fully-connected
network as described in Figure 2.

Tweets can have a varying number of roots,
which implies that they split into a varying num-
ber of phrases. Our model considers a maximum
of nine roots. A tweet with an excess of nine roots
is truncated suitably. On the other hand, a tweet
with less than nine roots is zero-padded. We have
described the complete process flowchart in Fig-
ure 3.

3 Experiments

For subtask A, we were provided with a dataset
consisting of tweets along with a binary class (0
or 1) which indicates whether this tweet is ironic
or not (O for non-ironic tweets and 1 for ironic
tweets). The data was collected from Twitter
API by querying tweets using the hashtags #irony,
#sarcasm and #not, with subsequent manual an-

‘ Tweet ‘

U

Dependency parsing using TweeboParser, Chunking of words
with same roots and thus creating multiple sub-phrases

’ Phrase 1 ‘ ’ Phrase 2 ‘ ‘ Phrase 3 |
@ Using DeepMoji to embed the phrases into vectors
‘ Vector(Phrase 1) ‘ | Vector(Phrase 2) ‘ ‘ Vector(Phrase 3) |

(=

Concatenation of vectors along with required padding or cutting

‘ Concat(Vector(Phrase 1), Vector(Phrase 2), Vecto

r(Phrase 3))

(=

Fully Connected Nets

‘ IsSarcasm?

Figure 3: Process Flowchart

notation to remove noise. 3,833 tweets for train-
ing and 784 tweets for testing were provided. The
evaluation was done by using accuracy, precision,
recall and F1 score.

number of correctly predicted instances

Accuracy : -
4 total number of instances

o number of correctly predicted instances
Precision :

number of predicted labels

number of correctly predicted instances
Recall : yp

number of labels in the gold standard

2 x precision x recall

F'1 score : —
precision + recall

We used the pipeline described in Figure 3.
The final step of the process used a fully con-
nected neural network with four layers. The in-
put layer of the FC network has a dimension of
20,736 (2,304*9), the second layer has a dimen-
sion of 9,216 (2,304*4), the third layer has a di-
mension of 2,304 and the fourth layer has 256 di-
mensions. The final layer has 2 dimensions, with
one for each class. This is depicted in Figure 2.
We used the hyperbolic tangent activation function
in all of the layers, and stochastic gradient descent
with a learning rate of 0.01 and a momentum of
0.5.

Two models were then devised. The difference
in these models lies in the input supplied to the
FC network. In the first model, this input is the
concatenation of the vectors obtained by embed-
ding phrases. In the second model, the input is the

630

Method | Accuracy Precision Recall | F1
score

Winning | 0.7347 | 0.6304 | 0.8006 | 0.7054

team

Our 0.6659 | 0.5527 | 0.6471 | 0.5962

System

B1

Our 0.6390 | 0.5198 | 0.6941 | 0.5944

System

82

Our 0.6951 | 0.6197 | 0.5176 | 0.5641

System

o

Table 1: Results
SemEval Task 3A

concatenation of the input in the first model along
with a 2,304-dimensional vector representing the
embedding of the tweet as a whole. The results
we get from various experiments on these models
are shown in Table 1.

System « is the first model. The best F1 score
for this model was achieved after four epochs, as
shown in Table 1. System 81 and 52 are the sec-
ond model running for five and four epochs re-
spectively.

4 Results and Discussions

We participated only in the shared task 3A as the
team Binarizer. We came ninth as per accuracy
and seventeenth as per F1 score among the forty-
three participating systems. Due to a glitch on

our side during submission the results are based
on 446 out of 784 instances in the test data.

The models perform better than the baseline
system as per the competition leaderboard. This
reinforces the notion that separate phrases in a
tweet carry information required for irony detec-
tion. System « has greater precision whereas Sys-
tem (3 has higher recall. So an application which
demands urgent detection of ironic tweets would
profit more from System /3. This demonstrates that
the sentiment information of the context provided
from the whole tweet is also important.

5 Conclusion and Future works

We have shown how using the sentiments of differ-
ent segments of tweets can enable irony detection.
From the results of our experiments, we conclude
that the segments have sufficient sentiment infor-
mation in them for the identification of irony. In
future research, we aim to improve the algorithm
for parsing these chunks by replacing the depen-
dency parser. Also, more experimentation can be
performed for the last part of the pipeline. As the
phrases from the tweets are sequences themselves,
we can apply sequence modelling with LSTMs or
CNNGs.

References

Francesco Barbieri, Horacio Saggion, and Francesco
Ronzano. 2014. Modelling sarcasm in twitter, a
novel approach. In Proceedings of the 5th Work-
shop on Computational Approaches to Subjectivity,
Sentiment and Social Media Analysis, pages 50-58.

Paula Carvalho, Luis Sarmento, Mario J Silva, and
Eugénio De Oliveira. 2009. Clues for detecting
irony in user-generated contents: oh...!! it’s so
easy;-. In Proceedings of the Ist international
CIKM workshop on Topic-sentiment analysis for
mass opinion, pages 53-56. ACM.

Dmitry Davidov, Oren Tsur, and Ari Rappoport. 2010.
Semi-supervised recognition of sarcastic sentences
in twitter and amazon. In Proceedings of the four-
teenth conference on computational natural lan-
guage learning, pages 107-116. Association for
Computational Linguistics.

Bjarke Felbo, Alan Mislove, Anders Sggaard, Iyad
Rahwan, and Sune Lehmann. 2017. Using millions
of emoji occurrences to learn any-domain represen-
tations for detecting sentiment, emotion and sar-
casm. In Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1615—
1625.

631

Roberto Gonzilez-Ibanez, Smaranda Muresan, and
Nina Wacholder. 2011. Identifying sarcasm in twit-
ter: a closer look. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies: Short
Papers-Volume 2, pages 581-586. Association for
Computational Linguistics.

Aditya Joshi, Pushpak Bhattacharyya, and Mark J. Car-
man. 2017. Automatic sarcasm detection: A survey.
ACM Computing Surveys, 50(5):73:1-73:22.

Aditya Joshi, Vinita Sharma, and Pushpak Bhat-
tacharyya. 2015. Harnessing context incongruity for
sarcasm detection. In Proceedings of the 53rd An-
nual Meeting of the Association for Computational
Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume 2:
Short Papers), volume 2, pages 757-762.

Lingpeng Kong, Nathan Schneider, Swabha
Swayamdipta, Archna Bhatia, Chris Dyer, and
Noah A Smith. 2014. A dependency parser for
tweets. In Proceedings of Empirical Methods in
Natural Language Processing (EMNLP), pages
1001-1012, Doha, Qatar.

Diana Maynard and Mark Greenwood. 2014. Who
cares about Sarcastic Tweets? Investigating the Im-
pact of Sarcasm on Sentiment Analysis. In Pro-
ceedings of the Ninth International Conference on
Language Resources and Evaluation (LREC’14),
pages 4238-4243, Reykjavik, Iceland. European
Language Resources Association.

Olutobi Owoputi, Brendan O’Connor, Chris Dyer,
Kevin Gimpel, Nathan Schneider, and Noah A
Smith. 2013. Improved part-of-speech tagging for
online conversational text with word clusters. In The
2013 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies (NAACL 2013), pages
380-390.

Soujanya Poria, Erik Cambria, and Alexander Gel-
bukh. 2016. Aspect extraction for opinion min-
ing with a deep convolutional neural network.
Knowledge-Based Systems, 108:42—49.

Federico Alberto Pozzi, Elisabetta Fersini, Enza
Messina, and Bing Liu. 2016. Sentiment analysis in
social networks. Morgan Kaufmann Publishers Inc.,
San Francisco, CA.

Tomas Ptacek, Ivan Habernal, and Jun Hong. 2014.
Sarcasm detection on czech and english twitter. In
Proceedings of COLING 2014, the 25th Interna-
tional Conference on Computational Linguistics:
Technical Papers, pages 213-223.

Ellen Riloff, Ashequl Qadir, Prafulla Surve, Lalin-
dra De Silva, Nathan Gilbert, and Ruihong Huang.
2013. Sarcasm as contrast between a positive senti-
ment and negative situation. In Proceedings of the
2013 Conference on Empirical Methods in Natural
Language Processing, pages 704-714.

Oren Tsur, Dmitry Davidov, and Ari Rappoport. 2010.
Icwsm-a great catchy name: Semi-supervised recog-
nition of sarcastic sentences in online product re-
views. In Proceedings of International AAAI Con-
ference on Web and Social Media, pages 162—-169.

Cynthia Van Hee, Els Lefever, and Vronique Hoste.
2018. Semeval-2018 task 3: Irony detection in en-
glish tweets. In Proceedings of the 12th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2018), New Orleans, LA, USA.

632

