
Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 622–627
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

YNU-HPCC at SemEval-2018 Task 3: Ensemble Neural Network Models
for Irony Detection on Twitter

Bo Peng, Jin Wang and Xuejie Zhang
School of Information Science and Engineering

Yunnan University
Kunming, P.R. China

Contact:xjzhang@ynu.edu.cn

Abstract

This paper describes our proposed to partici-
pate in the first year of the irony detection in
English tweets competition. Previous works
have demonstrated that long short-term mem-
ory models have achieved remarkable perfor-
mance in natural language processing; more-
over, combining multiple classifications from
various individual classifiers is generally more
powerful than a single classification. In order
to obtain more precise irony detection classi-
fication, our system trains several individual
neural network classifiers and combines their
results according to the ensemble-learning al-
gorithm.

1 Introduction

In most sentiment analysis tasks, recognition of
the precise emotional polarity of a sentence form-
s the basis for further work. However, much of
the corpus we used for analysis and training con-
tains numerous sarcasm and irony features that
will have a negative impact on the results of our
analysis and training. For example, although the
tweets provided by Twitter constitute a valuable
and widely applicable corpus for many natural lan-
guage processing tasks, Twitter users express their
feelings and opinions on social networks with fre-
quent irony (Amir et al., 2016). Therefore, such
tweets may contain converse sentiments informa-
tion compared their literal meaning. For exam-
ple, @someuser Yeah keeping cricket clean, that’s
what he wants #Sarcasm: ignoring the hash tag,
this tweet would be positive, which would miss
lead an analysis system that uses these types of
tweets as input.

Thus, it makes sense to discriminate whether a
text is ironic, particularly for social network texts
such as tweets. Further applications including
tweet sentiment analysis, will benefit from auto-
matic irony detection. The SemEval-2018 Twitter

competition promotes research in this area, and is
divided into two subtasks that involve binary and
four-class classification.

Subtask A is a two-class (or binary) classifica-
tion task whereby the system must predict whether
or not a tweet is ironic. The subtask B is a multi-
class classification task where the system has to
predict one out of four labels describing i) ver-
bal irony realized through a polarity contrast, ii)
verbal irony without such a polarity contrast (i.e.,
other verbal irony), iii) descriptions of situation-
al irony, and iv) non-irony (Cynthia Van Hee and
Hoste, 2018). For a more detailed description,
please see Carman et al. (2017).

In recent years, deep learning techniques have
significantly outperformed traditional methods in
several natural language processing (NLP) tasks
(Cliche, 2017). In such task, several deep learn-
ing architecture-based methods have achieved out-
standing performance in irony and sarcasm detec-
tion in social media. Silvio (Amir et al., 2016)
presented a novel convolutional network-based
method for learning user embeddings from their
previous posts and used the user embeddings with
lexical signals to recognize sarcasm. Ghosh and
Veale (2016) proposed a combined convolutional
neural network (CNN) model and long short-term
memory (LSTM) method followed by a deep neu-
ral network (DNN), which also achieved an im-
provement compared to traditional machine learn-
ing approaches such as support vector machines
(SVM).In this paper, we propose an ensemble of
multiple deep learning models with a voting clas-
sifier in order to enhance the performance of indi-
vidual neural network models for to detecting the
ironic tweets. We trained six individual classifier-
s, including LSTMs, bi-directional LSTMs, gat-
ed recurrent units (GRUs), bi-directional GRUs,
attention-based BiLSTMs and attention-based Bi-
GRU. Thereafter, we use a voting mechanism to

622



LSTM BiLSTM GRU BiGRU

Voting Classifier

Input

At-BiLSTM At-BiGRU

Figure 1: Ensemble voting classifier.

combine the results from the six classifiers in or-
der to produce the final prediction label.

The remainder of this paper is organized as fol-
lows. In section 2, we describe the overall struc-
ture of our system and the LSTM-based models, as
well as the selected individual classifiers. In sec-
tion 3, we present the experimental results of our
system, and conclusions are drawn in section 4.

2 System Description

2.1 Overview
Numerous previous research studies have demon-
strated that the resulting classifier is generally
more accurate than any of the individual classifiers
making up the ensemble (Maclin and Opitz, 1999).
For this reason, we decided to build our system
following this strategy. Our system is based on en-
semble learning and combined with various pop-
ular LSTM models. As illustrated in Figure 1,
each classifier is a LSTM-based model, such as bi-
directional LSTM (BiLSTM) and attention LST-
M (AtLSTM). Each classifier is trained using the
complete training set for that network. Following
this, for each classifier, the predicted outputs of all
classifiers are combined to produce the ensemble
system output. As the ironic and non-ironic sam-
ples in the training set are evenly distributed (1911
irony samples; 3834 in total), and each classifier
in our system is trained by the entire training set.
Therefore, we selected the voting classifier as the
combining scheme for our system. The principle
of the voting classifier is the selection of the pre-
diction supported by most of classifiers according
certain rules. For example, if the predictions for a
given sample are:

• classifier 1 - class 1

• classifier 2 - class 2

• classifier 3 - class 1

 

σ 

Xt

tanhσ 



σ 

tanh



Ht

Ct-1 Ct

ht-1 ht

ft

it
ot

Ct

Figure 2: The LSTM memory cell

According to majority voting rules, the voting
classifier would classify the sample as class 1.

Combining the output of several classifiers is
useful only if disagreement exists among them.
Thus, the selection of classifiers is rather impor-
tant for our system.

Neural networks, particularly for recurrent neu-
ral networks (RNNs) (Mikolov et al., 2010), have
achieved effective results in NLP. Owing to their
circular network structure, which allows them to
save previous information in a text sentence. Fur-
thermore, conventional RNNs contain cyclic con-
nections, making them powerful for modeling se-
quences. However, RNNs will face vanishing and
exploding gradient problems when dealing with
lengthy sequences. The LSTM, which is also a
special type of RNN, was designed to address
these problems. Therefore, we selected LSTM-
based models as our individual classifiers.

2.2 LSTMs
The difference between the RNN and LSTM is
that an LSTM (Sak et al., 2014) includes a dif-
ferent and more complex repeating module, as il-
lustrated in Figure 2. This repeating module, also
known as cell, provides the LSTM with the ability
to discriminate whether input information is use-
ful. A cell contains three gates, namely the input,
forgotten and output gates. These gates determine
the selection of information by means of the fol-
lowing formulae:

ft = σ(Wf · [ht−1, xt] + bf )
it = σ(Wi · [ht−1, xt] + bi)

(1)

where ft and it are the forgotten and retained fea-
tures; σ denotes the sigmoid function; xt and ht
are the t-th input and output; and W and b are cell
parameters.

Following this, the cell decides which new in-
formation will be stored in the cell state according

623



LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

X1 X2 X3 X4



Input

Bidirectional 

LSTM

softmax

Output

y

ih

ih

Figure 3: BiLSTM

to the next equation. Here C̃t represents the can-
didate values, created by a tanh gate.

C̃t = tanh(Wc · [ht−1, xt] + bC) (2)

Finally, updating of the cell state and calculating
the output of the cell are carried out according to
the equations,

ot = σ(Wo · [ht−1, xt] + bo)

Ct = ft ∗ Ct−1 + it ∗ C̃t

ht = ot ∗ tanh(Ct)

(3)

For an input tweet with length t, we firstly place
it into an LSTM layer and generate vector ht;
then, use this vector to calculate the possibility of
whether it is ironic by means of a softmax layer.

2.3 BiLSTMs

Standard RNNs use only the previous context and
ignore the future context information when deal-
ing with sequence texts. Bidirectional RNNs pro-
cess the data in both directions with two separate
hidden layers which then feed forward to the same
output layer (Schuster and Paliwal, 1997). BiL-
STMs replace the RNN cell with an LSTM cell
based on BiRNNs, as illustrated in Figure 3. BiL-
STMs compute the forward hidden state

−→
ht and

back forward hidden state
←−
ht , and then output the

sequence y by calculating equation (4), following
which the output layer is updated.

y =
−→
ht ⊗ ←−ht (4)

2.4 Attention BiLSTMs

LSTMs have promoted RNNs to a great extent in
NLP, and a further significant step is the attention

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

X1 X2 X3 X4



Input

Bidirectional 

LSTM

softmax

Output

Attention


ih

ih

y A

Figure 4: The LSTM memory cell

mechanism. We combined the attention mecha-
nism (Wang et al., 2016) with the BiLSTM as il-
lustrated in Figure 4. The attention captures the
context information of an entire tweet, defined as
follows:

et = tanh(Weht + be)
αt = softmax(et)

(5)

where We and be denote the weight and bias, re-
spectively, and t represents the attention vector
that will be combined with the internal representa-
tion generated by BiLSTM layers. The remaining
steps are consistent with the BiLSTMs.

2.5 GRUs

The GRU is a variant of LSTM. GRUs reduce the
gating signals to two from LSTMs to two, name-
ly reset and update gates. Although GRUs are
simpler in terms of structure and calculation com-
pared to LSTMs, their performance and efficiency
in specific tasks are not reduced (Cho et al., 2014).

Therefore, we also trained three similar models
using GRU cells. In total, we trained six individ-
ual classifiers: they are LSTM, BiLSTM, GRU,
BiGRU, Attention BiLSTM and attention BiGRU.

3 Experiment

3.1 Datasets

The training dataset is constructed from 3834 En-
glish tweets collected by the organizers by means
of searching Twitter for the hashtags #irony, #sar-
casm, and #not. The training dataset for task A
consists of tweets with a binary value score (0 or 1)

624



Subtask A Accuracy F1 score (macro) Recall (macro) Precision (macro)
LSTM 0.64163 0.64161 0.64174 0.65364
BiLSTM 0.64163 0.64161 0.64174 0.65364
GRU 0.63109 0.63108 0.63111 0.64031
BiGRU 0.64295 0.64099 0.64232 0.65110
Attention BiLSTM 0.64295 0.64085 0.64230 0.64519
Attention BiGRU 0.65744 0.65506 0.65673 0.66053
Ensemble 0.66007 0.66871 0.61894 0.62095

Table 1: Cross-validation results for subtask A.

Subtask B Accuracy F1 score (macro) Recall (macro) Precision (macro)
LSTM 0.7148 0.4939 0.5071 0.5341
BiLSTM 0.7330 0.4885 0.4964 0.5103
GRU 0.7369 0.5150 0.5017 0.5438
BiGRU 0.7031 0.4800 0.4946 0.5319
Attention BiLSTM 0.7200 0.5129 0.5315 0.5324
Attention BiGRU 0.7278 0.5081 0.5099 0.5216
Ensemble 0.7539 0.5172 0.5198 0.5385

Table 2: Cross-validation results for subtask B.

indicating whether the tweet is ironic. The train-
ing data for subtask B includes tweets with a nu-
meric value corresponding to one of the subcate-
gories, namely ironic by clash, other irony, situ-
ational irony and non-ironic. For subtasks A and
B, the content of the tweet is exactly the same a-
part from the labels. The organizers also provided
a version with no emoticons or hashtags and one
with emoticons or hashtags. According to peo-
ple’s tweeting habits, emoticons and hashtags are
important tools for expressing emotions, thus, we
used tweets with these features for training.

3.2 Preprocessing
Before feeding the tweets to any classifier, they are
pre-processed by following procedure:

• All uppercase letters are converted to lower-
case.

• URLs are replaced by <url>; instance of
@someone are replaced by <user>.

• Certain emoticons and emojis expressing
positive sentiments are transformed into
words such as smile, like, and happy. Oth-
ers that express negative emotions are all re-
placed by <irony>.

• For subtask A, all hashtags are replaced by
<hashtag>; for subtask B: except for #irony,

#sarcasm and #not, all other hashtags are re-
placed by <hashtag>, and the remainder are
all converted to the word irony.

We did not replace #irony, #sarcasm and #not
with word irony for subtask A because it is easy
for overfitting to occur while training. We con-
sider that the reason for this is that the searching
and labeling of these tweets mostly dependent on
their hashtags. In the four-category subtask B, this
does not lead to over-fitting, but aids in improving
accuracy.

3.3 Word embedding

We obtain word embeddings by training with the
corpus of English articles in Wikipedia pages us-
ing Global Vector (GloVe) (Pennington et al.,
2014). Compared to Word2vec (Mikolov et al.,
2013), GloVe achieves superior performance in
this task under the same conditions. Moreover, we
set the dimension of a single word as 300. Fol-
lowing the above steps, we create a look-up table
that allows for most of the words in the training
dataset to correspond to word vectors trained in
advance, with the dataset containing 9056 unique
words. However, 1266 words remain that cannot
be matched, with most of these be-ing numbers
and certain user-created words.

625



Accuracy F1 score (macro) Recall (macro) Precision (macro)
Subtask A 0.5089 0.4086 0.4277 0.3912
Subtask B 0.466 0.3127 0.3229 0.3384

Table 3: Evaluation for Subtask A and B.

3.4 Parameters

We used earlystopping to observe the accuracy
value convergence of each epoch, with patience
set to 3 and min delta set to 0.05; we found that
each model stopped training with no more than
35 epochs or even less. Consequently, we set the
number of epochs to 30 for the training of every
classifier. Furthermore, we set the batch size to
100 and drop-out rate to 0.25 for training of each
model. We selected the categorical cross-entropy
as the loss function and Adagrad as the optimizer
(Duchi et al., 2011).

For subtasks A and B, the individual classifiers
are trained with the training dataset. Ow-ing to
the lack of development dataset, we only evaluated
the performance of the classifiers and prevented
overfitting by cross-validation. The models were
implemented in Keras using TensorFlow backend.

3.5 Results and analysis

The experimental results of the individual classi-
fiers and ensemble are displayed in Table 1 for
subtask A and Table 2 for subtask B.

As indicated in Table 1, BiLSTM and attention
GRU achieved a superior performance. However,
there is no significant difference among the results
of each model. This may be the reason why the
ensemble does not operate effectively, because a
good ensemble is one in which the individual clas-
sifiers are both ac-curate and create their errors
in different parts of the input space (Maclin and
Opitz, 1999). Our input space is not sufficiently
large and the classifiers are similar, creating their
errors in the same place.

For subtask B, our preprocessing strategy aid-
s in improving accuracy. However, the samples
in the training set are not as evenly distributed as
subtask A, reflecting the ensemble effect. The pre-
cision achieved by our system achieved in subtask
B ranks 10th out of 32 participants. However, nu-
merous aspects of our system require further im-
provement.

The evaluation results from the committee are
illustrated in Table 3. Due to our negligence, we
submitted a wrong result of Subtask B. After the

organizing committee reminded us that we have
corrected the error and re-evaluated our result for
Subtask b. Table 3 shows the corrected results
for Subtask B. We apologize for the inconvenience
caused by our own negligence and we thanked the
organizers for prompt reminders so that we could
correct the results in a timely manner.

4 Conclusion and future work

In this paper, we have presented the system we
used to compete in SemEval-2018 task 3 - Irony
detection in English tweets. The purpose of our
participation in this competition is to deepen our
understanding of irony detection as a novel NLP
application. Moreover, we hope to determine an
effective combination approach to ensemble learn-
ing and neural networks by means of practical ap-
plication.

For future work, it would be meaningful to im-
prove the neural network by combining the charac-
teristic that ironic sentences are often inconsistent.
Moreover, the goal is to identify superior practi-
cal ensemble methods to achieve improved perfor-
mance in increased NLP applications.

References
Silvio Amir, Byron C Wallace, Hao Lyu, and Paula

Carvalho Mrio J Silva. 2016. Modelling context
with user embeddings for sarcasm detection in so-
cial media. pages 167–177.

Mark J. Carman, Mark J. Carman, and Mark J. Car-
man. 2017. Automatic Sarcasm Detection: A Sur-
vey. ACM.

Kyunghyun Cho, Bart Van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. Computer Sci-
ence.

Mathieu Cliche. 2017. BBtwtr at semeval-2017 task
4: Twitter sentiment analysis with cnns and lstms.

Els Lefever Cynthia Van Hee and Vronique Hoste.
2018. Semeval-2018 task 3: Irony detection in en-
glish tweets. In Proceedings of the 12th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2018).

626



John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine
Learning Research, 12(7):257–269.

Aniruddha Ghosh and Tony Veale. 2016. Fracking sar-
casm using neural network. In The Workshop on
Computational Approaches To Subjectivity.

R. Maclin and D. Opitz. 1999. Popular ensemble meth-
ods: An empirical study. Journal of Artificial Intel-
ligence Research, 11:169–198.

Tomas Mikolov, Martin Karafit, Lukas Burget, Jan Cer-
nocky, and Sanjeev Khudanpur. 2010. Recurren-
t neural network based language model. In IN-
TERSPEECH 2010, Conference of the Internation-
al Speech Communication Association, Makuhari,
Chiba, Japan, September, pages 1045–1048.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corra-
do, and Jeffrey Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. 26:3111–3119.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Conference on Empirical Meth-
ods in Natural Language Processing, pages 1532–
1543.

Ha?im Sak, Andrew Senior, and Fran?oise Beaufays.
2014. Long short-term memory based recurren-
t neural network architectures for large vocabulary
speech recognition. Computer Science, pages 338–
342.

Mike Schuster and Kuldip K Paliwal. 1997. Bidirec-
tional recurrent neural networks. IEEE Press.

627


