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Abstract
In this paper we present two deep-learning
systems that competed at SemEval-2018 Task
3 “Irony detection in English tweets”. We
design and ensemble two independent mod-
els, based on recurrent neural networks (Bi-
LSTM), which operate at the word and charac-
ter level, in order to capture both the semantic
and syntactic information in tweets. Our mod-
els are augmented with a self-attention mech-
anism, in order to identify the most informa-
tive words. The embedding layer of our word-
level model is initialized with word2vec word
embeddings, pretrained on a collection of 550
million English tweets. We did not utilize
any handcrafted features, lexicons or external
datasets as prior information and our models
are trained end-to-end using back propagation
on constrained data. Furthermore, we provide
visualizations of tweets with annotations for
the salient tokens of the attention layer that
can help to interpret the inner workings of the
proposed models. We ranked 2nd out of 42
teams in Subtask A and 2nd out of 31 teams
in Subtask B. However, post-task-completion
enhancements of our models achieve state-of-
the-art results ranking 1st for both subtasks.

1 Introduction

Irony is a form of figurative language, considered
as “saying the opposite of what you mean”, where
the opposition of literal and intended meanings is
very clear (Barbieri and Saggion, 2014; Liebrecht
et al., 2013). Traditional approaches in NLP (Tsur
et al., 2010; Barbieri and Saggion, 2014; Karoui
et al., 2015; Farías et al., 2016) model irony based
on pattern-based features, such as the contrast be-
tween high and low frequent words, the punctua-
tion used by the author, the level of ambiguity of

yay its fucking monday life is so perfect and

magical i love everything

Label: ironic by clash

b e a u t i f u l w a y t o s t a r t m y

m o r n i n g .

Label: ironic by clash

Figure 1: Attention heat-map visualization. The
color intensity of each word / character, corre-
sponds to its weight (importance), as given by the
self-attention mechanism (Section 2.6).

the words and the contrast between the sentiments.
Also, (Joshi et al., 2016) recently added word em-
beddings statistics to the feature space and further
boosted the performance in irony detection.

Modeling irony, especially in Twitter, is a chal-
lenging task, since in ironic comments literal
meaning can be misguiding; irony is expressed
in “secondary” meaning and fine nuances that are
hard to model explicitly in machine learning al-
gorithms. Tracking irony in social media posses
the additional challenge of dealing with special
language, social media markers and abbreviations.
Despite the accuracy achieved in this task by hand-
crafted features, a laborious feature-engineering
process and domain-specific knowledge are re-
quired; this type of prior knowledge must be con-
tinuously updated and investigated for each new
domain. Moreover, the difficulty in parsing tweets
(Gimpel et al., 2011) for feature extraction renders

613



their precise semantic representation, which is key
of determining their intended gist, much harder.

In recent years, the successful utilization of
deep learning architectures in NLP led to alterna-
tive approaches for tracking irony in Twitter (Joshi
et al., 2017; Ghosh and Veale, 2017). (Ghosh
and Veale, 2016) proposed a Convolutional Neu-
ral Network (CNN) followed by a Long Short
Term Memory (LSTM) architecture, outperform-
ing the state-of-the-art. (Dhingra et al., 2016) uti-
lized deep learning for representing tweets as a se-
quence of characters, instead of words and proved
that such representations reveal information about
the irony concealed in tweets.

In this work, we propose the combination of
word- and character-level representations in or-
der to exploit both semantic and syntactic infor-
mation of each tweet for successfully predicting
irony. For this purpose, we employ a deep LSTM
architecture which models words and characters
separately. We predict whether a tweet is ironic
or not, as well as the type of irony in the ironic
ones by ensembling the two separate models (late
fusion). Furthermore, we add an attention layer to
both models, to better weigh the contribution of
each word and character towards irony prediction,
as well as better interpret the descriptive power
of our models. Attention weighting also better
addresses the problem of supervising learning on
deep learning architectures. The suggested model
was trained only on constrained data, meaning that
we did not utilize any external dataset for further
tuning of the network weights.

The two deep-learning models submitted to
SemEval-2018 Task 3 “Irony detection in English
tweets” (Van Hee et al., 2018) are described in
this paper with the following structure: in Sec-
tion 2 an overview of the proposed models is pre-
sented, in Section 3 the models for tracking irony
are depicted in detail, in Section 4 the experimen-
tal setup alongside with the respective results are
demonstrated and finally, in Section 5 we discuss
the performance of the proposed models.

2 Overview

Fig. 2 provides a high-level overview of our ap-
proach, which consists of three main steps: (1) the
pre-training of word embeddings, where we train
our own word embeddings on a big collection
of unlabeled Twitter messages, (2) the indepen-
dent training of our models: word- and char-level,
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Figure 2: High-level overview of our approach

(3) the ensembling, where we combine the predic-
tions of each model.

2.1 Task definitions

The goal of Subtask A is tracking irony in tweets
as a binary classification problem (ironic vs. non-
ironic). In Subtask B, we are also called to
determine the type of irony, with three differ-
ent classes of irony on top of the non-ironic one
(four-class classification). The types of irony are:
(1) Verbal irony by means of a polarity con-
trast, which includes messages whose polarity
(positive, negative) is inverted between the lit-
eral and the intended evaluation, such as "I really
love this year’s summer; weeks and weeks of aw-
ful weather", where the literal evaluation ("I re-
ally love this year’s summer") is positive, while
the intended one, which is implied in the context
("weeks and weeks of awful weather"), is nega-
tive. (2) Other verbal irony, which refers to in-
stances showing no polarity contrast, but are ironic
such as "Yeah keeping cricket clean, that’s what he
wants #Sarcasm" and (3) situational irony which
is present in messages that a present situation fails
to meet some expectations, such as "Event tech-
nology session is having Internet problems. #irony
#HSC2024" in which the expectation that a tech-
nology session should provide Internet connection
is not met.

2.2 Data

Unlabeled Dataset. We collected a dataset of 550
million archived English Twitter messages, from
Apr. 2014 to Jun. 2017. This dataset is used for
(1) calculating word statistics needed in our text
preprocessing pipeline (Section 2.4) and (2) train-
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ing word2vec word embeddings (Section 2.3).

2.3 Word Embeddings

Word embeddings are dense vector representa-
tions of words (Collobert and Weston, 2008;
Mikolov et al., 2013), capturing semantic their and
syntactic information. We leverage our unlabeled
dataset to train Twitter-specific word embeddings.
We use the word2vec (Mikolov et al., 2013) al-
gorithm, with the skip-gram model, negative sam-
pling of 5 and minimum word count of 20, uti-
lizing Gensim’s (Řehůřek and Sojka, 2010) im-
plementation. The resulting vocabulary contains
800, 000 words. The pre-trained word embeddings
are used for initializing the first layer (embedding
layer) of our neural networks.

2.4 Preprocessing1

We utilized the ekphrasis2 (Baziotis et al., 2017)
tool as a tweet preprocessor. The preprocessing
steps included in ekphrasis are: Twitter-specific
tokenization, spell correction, word normaliza-
tion, word segmentation (for splitting hashtags)
and word annotation.
Tokenization. Tokenization is the first fundamen-
tal preprocessing step and since it is the basis for
the other steps, it immediately affects the quality
of the features learned by the network. Tokeniza-
tion in Twitter is especially challenging, since
there is large variation in the vocabulary and the
used expressions. Part of the challenge is also the
decision of whether to process an entire expres-
sion (e.g. anti-american) or its respective tokens.
Ekphrasis overcomes this challenge by recogniz-
ing the Twitter markup, emoticons, emojis, ex-
pressions like dates (e.g. 07/11/2011, April 23rd),
times (e.g. 4:30pm, 11:00 am), currencies (e.g.
$10, 25mil, 50e), acronyms, censored words (e.g.
s**t) and words with emphasis (e.g. *very*).
Normalization. After the tokenization we apply
a series of modifications on the extracted tokens,

1Significant portions of the systems submitted to SemEval
2018 in Tasks 1, 2 and 3, by the NTUA-SLP team are shared,
specifically the preprocessing and portions of the DNN archi-
tecture. Their description is repeated here for completeness.

2github.com/cbaziotis/ekphrasis

such as spell correction, word normalization and
segmentation. We also decide which tokens to
omit, normalize and surround or replace with spe-
cial tags (e.g. URLs, emails and @user). For
the tasks of spell correction (Jurafsky and James,
2000) and word segmentation (Segaran and Ham-
merbacher, 2009) we use the Viterbi algorithm.
The prior probabilities are initialized using uni/bi-
gram word statistics from the unlabeled dataset.

The benefits of the above procedure are the re-
duction of the vocabulary size, without removing
any words, and the preservation of information
that is usually lost during tokenization. Table 1
shows an example text snippet and the resulting
preprocessed tokens.

2.5 Recurrent Neural Networks

We model the Twitter messages using Recurrent
Neural Networks (RNN). RNNs process their in-
puts sequentially, performing the same operation,
ht = fW (xt, ht−1), on every element in a se-
quence, where ht is the hidden state t the time
step, and W the network weights. We can see that
hidden state at each time step depends on previous
hidden states, thus the order of elements (words)
is important. This process also enables RNNs to
handle inputs of variable length.

RNNs are difficult to train (Pascanu et al.,
2013), because gradients may grow or decay ex-
ponentially over long sequences (Bengio et al.,
1994; Hochreiter et al., 2001). A way to overcome
these problems is to use more sophisticated vari-
ants of regular RNNs, like Long Short-Term Mem-
ory (LSTM) networks (Hochreiter and Schmidhu-
ber, 1997) or Gated Recurrent Units (GRU) (Cho
et al., 2014), which introduce a gating mechanism
to ensure proper gradient flow through the net-
work. In this work, we use LSTMs.

2.6 Self-Attention Mechanism

RNNs update their hidden state hi as they pro-
cess a sequence and the final hidden state holds
a summary of the information in the sequence.
In order to amplify the contribution of important
words in the final representation, a self-attention
mechanism (Bahdanau et al., 2014) can be used

original The *new* season of #TwinPeaks is coming on May 21, 2017. CANT WAIT \o/ !!! #tvseries #davidlynch :D
processed the new <emphasis> season of <hashtag> twin peaks </hashtag> is coming on <date> . cant <allcaps> wait

<allcaps> <happy> ! <repeated> <hashtag> tv series </hashtag> <hashtag> david lynch </hashtag> <laugh>

Table 1: Example of our text processor
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Figure 3: Comparison between the regular RNN
and the RNN with attention.

(Fig. 3). In normal RNNs, we use as represen-
tation r of the input sequence its final state hN .
However, using an attention mechanism, we com-
pute r as the convex combination of all hi. The
weights ai are learned by the network and their
magnitude signifies the importance of each hid-
den state in the final representation. Formally:
r =

∑N
i=1 aihi,where

∑N
i=1 ai = 1, and ai > 0.

3 Models Description

We have designed two independent deep-learning
models, with each one capturing different aspects
of the tweet. The first model operates at the word-
level, capturing the semantic information of the
tweet and the second model at the character-level,
capturing the syntactic information. Both models
share the same architecture, and the only differ-
ence is in their embedding layers. We present both
models in a unified manner.

3.1 Embedding Layer

Character-level. The input to the network is a
Twitter message, treated as a sequence of char-
acters. We use a character embedding layer
to project the characters c1, c2, ..., cN to a low-
dimensional vector space RC , where C the size of
the embedding layer and N the number of charac-
ters in a tweet. We randomly initialize the weights
of the embedding layer and learn the character em-
beddings from scratch.
Word-level. The input to the network is a Twit-
ter message, treated as a sequence of words. We
use a word embedding layer to project the words
w1, w2, ..., wN to a low-dimensional vector space
RW , where W the size of the embedding layer and
N the number of words in a tweet. We initialize
the weights of the embedding layer with our pre-
trained word embeddings.

3.2 BiLSTM Layers

An LSTM takes as input the words (characters)
of a tweet and produces the word (character) an-
notations h1, h2, ..., hN , where hi is the hidden
state of the LSTM at time-step i, summarizing
all the information of the sentence up to wi (ci).
We use bidirectional LSTM (BiLSTM) in order to
get word (character) annotations that summarize
the information from both directions. A bidirec-
tional LSTM consists of a forward LSTM

−→
f that

reads the sentence from w1 to wN and a backward
LSTM

←−
f that reads the sentence from wN to w1.

We obtain the final annotation for a given word
wi (character ci), by concatenating the annotations
from both directions, hi =

−→
hi ‖

←−
hi , hi ∈ R2L

where ‖ denotes the concatenation operation and
L the size of each LSTM. We stack two layers of
BiLSTMs in order to learn more high-level (ab-
stract) features.

3.3 Attention Layer

Not all words contribute equally to the meaning
that is expressed in a message. We use an atten-
tion mechanism to find the relative contribution
(importance) of each word. The attention mech-
anism assigns a weight ai to each word annotation
hi. We compute the fixed representation r of the
whole input message. as the weighted sum of all
the word annotations.

ei = tanh(Whhi + bh), ei ∈ [−1, 1] (1)

ai =
exp(ei)∑T
t=1 exp(et)

,

T∑

i=1

ai = 1 (2)

r =
T∑

i=1

aihi, r ∈ R2L (3)

where Wh and bh are the attention layer’s weights.
Character-level Interpretation. In the case of
the character-level model, the attention mecha-
nism operates in the same way as in the word-
level model. However, we can interpret the weight
given to each character annotation hi by the atten-
tion mechanism, as the importance of the informa-
tion surrounding the given character.

3.4 Output Layer

We use the representation r as feature vector for
classification and we feed it to a fully-connected
softmax layer with L neurons, which outputs a
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probability distribution over all classes pc as de-
scribed in Eq. 4:

pc =
eWr+b

∑
i∈[1,L](e

Wir+bi)
(4)

where W and b are the layer’s weights and biases.
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Figure 4: The word/character-level model.

3.5 Regularization

In order to prevent overfitting of both models, we
add Gaussian noise to the embedding layer, which
can be interpreted as a random data augmentation
technique, that makes models more robust to over-
fitting. In addition to that, we use dropout (Srivas-
tava et al., 2014) and early-stopping.

Finally, we do not fine-tune the embedding lay-
ers of the word-level model. Words occurring in
the training set, will be moved in the embedding
space and the classifier will correlate certain re-
gions (in embedding space) to certain meanings or
types of irony. However, words in the test set and
not in the training set, will remain at their initial
position which may no longer reflect their “true”
meaning, leading to miss-classifications.

3.6 Ensemble
A key factor to good ensembles, is to utilize di-
verse classifiers. To this end, we combine the pre-
dictions of our word and character level models.
We employed two ensemble schemes, namely un-
weighted average and majority voting.
Unweighted Average (UA). In this approach, the
final prediction is estimated from the unweighted
average of the posterior probabilities for all differ-
ent models. Formally, the final prediction p for a
training instance is estimated by:

p = argmax
c

1

C

M∑

i=1

~pi, pi ∈ IRC (5)

where C is the number of classes, M is the number
of different models, c ∈ {1, ..., C} denotes one
class and ~pi is the probability vector calculated by
model i ∈ {1, ...,M} using softmax function.
Majority Voting (MV). Majority voting approach
counts the votes of all different models and
chooses the class with most votes. Compared
to unweighted averaging, MV is affected less by
single-network decisions. However, this schema
does not consider any information derived from
the minority models. Formally, for a task with C
classes and M different models, the prediction for
a specific instance is estimated as follows:

vc =
M∑

i=1

Fi(c)

p = argmax
c∈{1,...,C}

vc

(6)

where vc denotes the votes for class c from all dif-
ferent models, Fi is the decision of the ith model,
which is either 1 or 0 with respect to whether the
model has classified the instance in class c or not,
respectively, and p is the final prediction.

4 Experiments and Results

4.1 Experimental Setup
Class Weights. In order to deal with the prob-
lem of class imbalances in Subtask B, we apply
class weights to the loss function of our models,
penalizing more the misclassification of underrep-
resented classes. We weight each class by its in-
verse frequency in the training set.
Training We use Adam algorithm (Kingma and
Ba, 2014) for optimizing our networks, with mini-
batches of size 32 and we clip the norm of the gra-
dients (Pascanu et al., 2013) at 1, as an extra safety
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measure against exploding gradients. For devel-
oping our models we used PyTorch (Paszke et al.,
2017) and Scikit-learn (Pedregosa et al., 2011).
Hyper-parameters. In order to find good hyper-
parameter values in a relative short time (com-
pared to grid or random search), we adopt the
Bayesian optimization (Bergstra et al., 2013) ap-
proach, performing a “smart” search in the high
dimensional space of all the possible values. Ta-
ble 2, shows the selected hyper-parameters.

Word-Model Char-Model
Embeddings 300 25
Emb. Dropout 0.1 0.0
Emb. Noise 0.05 0.0
LSTM (x2) 150 150
LSTM Dropout 0.2 0.2

Table 2: Hyper-parameters of our models.

4.2 Results and Discussion
Our official ranking is 2/43 in Subtask A and 2/29
in Subtask B as shown in Tables 3 and 4. Based on
these rankings, the performance of the suggested
model is competitive on both the binary and the
multi-class classification problem. Except for its
overall good performance, it also presents a stable
behavior when moving from two to four classes.

# Team Name Acc Prec Rec F1
1 THU_NGN 0.7347 0.6304 0.8006 0.7054
2 NTUA-SLP 0.7321 0.6535 0.6913 0.6719
3 WLV 0.6429 0.5317 0.8360 0.6500
4 Unknown 0.6607 0.5506 0.7878 0.6481
5 NIHRIO, NCL 0.7015 0.6091 0.6913 0.6476

Table 3: Competition results for Subtask A

# Team Name Acc Prec Rec F1
1 Unknown 0.7321 0.5768 0.5044 0.5074
2 NTUA-SLP 0.6518 0.4959 0.5124 0.4959
3 THU_NGN 0.6046 0.4860 0.5414 0.4947
4 Unknown 0.6033 0.4660 0.5058 0.4743
5 NIHRIO, NCL 0.6594 0.5446 0.4475 0.4437

Table 4: Competition results for Subtask B

Additional experimentation following the offi-
cial submission significantly improved the effi-
ciency of our models. The results of this experi-
mentation, tested on the same data set, are shown
in Tables 5 and 6. The first baseline is a Bag
of Words (BOW) model with TF-IDF weighting.
The second baseline is a Neural Bag of Words (N-
BOW) model where we retrieve the word2vec rep-
resentations of the words in a tweet and compute

model Acc Prec Rec f1
BOW 0.6531 0.6453 0.6417 0.6426
N-BOW 0.6645 0.6543 0.6517 0.6527
LSTM-char 0.6241 0.6371 0.6342 0.6163
LSTM-word 0.7746 0.7726 0.7826 0.7698
Ens-MV 0.7462 0.7381 0.7461 0.7400
Ens-UA 0.7883 0.7865 0.7992 0.7856

Table 5: Results of our models for Subtask A

model Acc Prec Rec f1
BOW 0.5880 0.4460 0.4384 0.4371
N-BOW 0.6084 0.4649 0.4560 0.4520
LSTM-char 0.5726 0.4098 0.4102 0.3782
LSTM-word 0.6987 0.5394 0.5790 0.5315
Ens-MV 0.6888 0.5433 0.5442 0.5358
Ens-UA 0.6888 0.5361 0.4874 0.4959

Table 6: Results of our models for Subtask B

the tweet representation as the centroid of the con-
stituent word2vec representations. Both BOW and
N-BOW features are then fed to a linear SVM clas-
sifier, with tuned C = 0.6.

The best performance that we achieve, as shown
in Tables 5 and 6 is 0.7856 and 0.5358 for Sub-
task A and B respectively34. In Subtask A the
BOW and N-BOW models perform similarly with
respect to f1 metric and word-level LSTM is the
most competitive individual model. However, the
best performance is achieved when the character-
and the word-level LSTM models are combined
via the unweighted average ensembling method,
showing that the two suggested models indeed
contain different types of information related to
irony on tweets. Similar observations are de-
rived for Subtask B, except that the character-level
model in this case performs worse than the base-
line models and contributes less to the final results.

4.3 Attention Visualizations
Our models’ behavior can be interpreted by vi-
sualizing the distribution of the attention weights
assigned to the words (characters) of the tweet.
The weights signify the contribution of each word
(character), to model’s final classification deci-
sion. In Fig. 5, examples of the weights as-

3The reported performance is boosted in comparison with
the results presented in Tables 3 and 4 due to the utilization
of unnormalized word vectors. Specifically, after further ex-
perimentation we found that normalization of word vectors
provided to the LSTM is detrimental to performance, because
semantic information is encoded by both the angle and length
of the embedding vectors (Wilson and Schakel, 2015).

4For our DNNs, the results are computed by averaging 10
runs to account for the variability in training performance.
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Figure 6: Comparison of the behavior of the word and character level models.

signed by the word level model to ironic tweets
are presented. The salient keywords that capture
the essence of irony or even polarity transitions
(e.g. irony by clash) are correctly identified by the
model. Moreover, in Fig. 6 we compare the behav-
ior of the word and character models on the same
tweets. In the first example, the character level
model assigns larger weights to the most discrimi-
native words whereas the weights assigned by the
word level model seem uniform and insufficient in
spotting the polarity transition. However, in the
second example, the character level model does
not attribute any weight to the words with posi-
tive polarity (e.g. “fun”) compared to the word
level model. Based on these observations, the two
models indeed behave diversely and consequently
contribute to the final outcome (see Section 3.6).

5 Conclusion

In this paper we present an ensemble of two
different deep learning models: a word- and a
character-level deep LSTM for capturing the se-
mantic and syntactic information of tweets, re-
spectively. We demonstrated that combining the
predictions of the two models yields competi-
tive results in both subtasks for irony prediction.
Moreover, we proved that both types of informa-

tion (semantic and syntactic) contribute to the final
results with the word-level model, however, indi-
vidually achieving more accurate irony prediction.
Also, the best way of combining the outcomes
of the separate models is by conducting majority
voting over the respective posteriors. Finally, the
proposed model successfully predicts the irony in
tweets without exploiting any external information
derived from hand-crafted features or lexicons.

The performance reported in this paper could
be further boosted by utilizing transfer learning
methods from larger datasets. Moreover, the
joint training of word- and character-level models
can be tested for further improvement of the
results. Finally, we make the source code of
our models and our pretrained word embeddings
available to the community5, in order to make our
results easily reproducible and facilitate further
experimentation.
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