
Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 477–481
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

SyntNN at SemEval-2018 Task 2: is Syntax Useful for Emoji Prediction?
Embedding Syntactic Trees in Multi Layer Perceptrons

Andrea Santilli
Department of Enterprise Engineering

University of Rome Tor Vergata
Italy

andrea.santilli@live.it

Fabio Massimo Zanzotto
Department of Enterprise Engineering

University of Rome Tor Vergata
Italy

fabio.massimo.zanzotto@uniroma2.it

Abstract

In this paper, we present SyntNN as a
way to include traditional syntactic mod-
els in multilayer neural networks used in
the task of Semeval Task 2 of emoji pre-
diction (Barbieri et al., 2018). The model
builds on the distributed tree embedder also
known as distributed tree kernel (Zanzotto and
Dell’Arciprete, 2012). Initial results are ex-
tremely encouraging but additional analysis is
needed to overcome the problem of overfitting.

1 Introduction

Syntactic models of language have always played
a crucial role in many natural language processing
tasks but, in recent years, it has been marginalized
by the advent of neural networks and in particular
long-short term memory (LSTM). These latter net-
works have had a tremendous impact on how lin-
guistic tasks are modeled and, sometimes, solved.

In this paper, we want to explore the use of “tra-
ditional” syntactic information within a neural net-
work framework in the task of Semeval Task 2 of
emoji prediction (Barbieri et al., 2018, 2017). We
propose SyntNN as a way to include traditional
syntactic models in multilayer neural networks.
The model builds on the distributed tree embed-
der also known as distributed tree kernel (Zanzotto
and Dell’Arciprete, 2012; Ferrone and Zanzotto,
2014; Zanzotto et al., 2015) that is a way to trans-
pose syntactic information in small vectors. Initial
results are extremely encouraging: SyntNN out-
performs syntax-unaware neural networks on the
trial set. Unfortunately, these promising results are
not confirmed on the test set. Hence, we analyzed
these results to try to understand why this has hap-
pened.

2 SyntNN: a Syntax-aware Multilayer
Perceptron

SyntNN is a simple, non-recurrent neural network
that aims to exploit traditional syntactic interpre-
tations of tweets in classification tasks. This net-
work wants to explore two questions: first, in-
vestigating whether “traditional” syntactic inter-
pretation can be used within neural networks and,
second, understanding if syntactic information is
useful in modeling tweets for the specific task of
emoji prediction.

The architecture of SyntNN is then organized
around two sub-networks (see Fig. 1): (1) a
syntactic sub-network and (2) a semantic sub-
network. These two sub-networks are then merged
to obtain the final classification layer.

The rest of the section describes the two sub-
networks and the merging layer.

2.1 Syntactic Subnetwork with a Distributed
Tree Embedding Layer

The syntactic subnetwork aims to take syntactic
interpretations of tweets and make them available
to a simple, non-recurrent neural network. The
key point is how to obtain the transformation of
the symbolic representation of syntactic trees into
tensor-based representations that have meaningful
properties.

The Distributed Tree Embedding Layer (DTE)
(see Fig. 1) is the core component of the syntactic
subnetwork. DTE is based on a technique to em-
bed the structural information of syntactic tree into
dense, low-dimensional vectors of real numbers
(Zanzotto and Dell’Arciprete, 2012; Ferrone and
Zanzotto, 2014; Zanzotto et al., 2015). This tech-
nique has been originated as a way to replace syn-
tactic kernel functions (Collins and Duffy, 2002)
in kernel machines (Cristianini and Shawe-Taylor,
2000) but it can be seen as a principled way to

477

Figure 1: MultiLayer Perceptron Architecture for Syntactic and Semantic Representation of Tweets.

insert syntactic information into vectors. In this
technique, tree are transformed into distributed
trees that are low dimensional vectors. These dis-
tributed trees build on the recently revitalized re-
search in Distributed Representations (DR) (Hin-
ton et al., 1986; Plate, 1994; Bengio, 2009; Col-
lobert et al., 2011; Socher et al., 2011).

DTE is a layer that maps trees into low-
dimensional vectors in a space Rd. This space is a
low dimensional space that embeds the space rep-
resenting trees according to their subtrees. DTE
is then represented as the following embedding
layer:

y =W (DTE)S(T) (1)

where S(T) = t is a onehot layer that maps trees
to vectors in the space of subtrees Rn andW (DTE)

d×n

is a transformation matrix that embeds the huge
space of subtrees Rn in a smaller space Rd.

DTE is based on the Johnson-Lindenstrauss
Tranform (JLT) (Johnson and Lindenstrauss,
1984; Dasgupta and Gupta, 1999) and it is not
learned. Using JLT, the layer DTE maps vectors
representing trees in the space of subtrees in vec-
tors in a reduced space where similarity is approxi-
mately preserved, that is, given two syntactic trees
T1 and T2 and given a ε, it is possible to find a
W for which, if Rd has a specific relation with Rn

(see (Dasgupta and Gupta, 1999)), this property
holds:

|t1−t2|−ε < |Wt1−Wt2| < |t1−t2|+ε (2)

where t1 = S(T1) and t2 = S(T2). Hence, the
space Rd embeds the space Rn of the subtrees.

However, directly producing a DTE with JLT is
unfeasible as the space of subtrees Rn is huge and
intractable.

Our solution is using the recursive model
for computing distributed trees (Zanzotto and
Dell’Arciprete, 2012; Zanzotto et al., 2015),
which empirically guarantees the property in
Equation 2. This model is a mapping function
that encodes trees in vectors by assigning random
vectors to node labels and by recursively comput-
ing vectors for subtrees by composing vectors for
nodes. The mapping function has a linear com-
plexity with respect to the size of the tree.

After the DTE, the syntactic subnetwork has
two dense layers with ReLU activation functions.
These dense layers should select subtrees that are
relevant for the final task of emoji prediction.

As it is designed, the syntactic subnetwork
should take into consideration the syntactic infor-
mation of tweets and it should be a valuable model
to experiment with syntactic information on the
task of emoji prediction.

2.2 Semantic Subnetwork with a
(Bag-of-)Word Embedding Layer

The semantic subnetwork is composed by a classic
multilayer perceptron (MLP) network that takes as
input tweets represented as xidf . These vectors
represent tweets in the following way. Each di-
mension represents a word w and, if a tweet con-
tains the word w, the dimension has the inverse
document frequency (idf) value of the word w,
otherwise it has a 0. Hence, the first layer of the
semantic subnetwork is a word embedding layer

478

working in the following way:

y = Exidf (3)

where E is a word embedding matrix. As word
embeddings, we used the Stanford’s Glove (twit-
ter 27B, 200d) for the English task and the word
embedding used in the paper How Cosmopolitan
Are Emojis?(Barbieri et al., 2016)1 for the Span-
ish task.

2.3 Merging Syntactic and Semantic
Subnetworks

The merging layer of the syntactic and semantic
subnetworks is composed by a concatenate layer
that concatenate the syntactic vector with the se-
mantic vector among the features axis. Then, a
batch normalization layer performs the operation
of batch normalization (Ioffe and Szegedy, 2015).
At the end a 20 units layer compute the emoji’s
probability through a softmax layer.

3 Experiments and Evaluation

3.1 Experimental Setting

To ensure replicability, this section fully describes
the implementation details of SyntNN (Fig. 1)
and the values of its metaparameters. Moreover, it
introduces the networks used for comparison and
the datasets used on the experiments.

For the Syntactic Subnetwork of SyntNN, we
used the Python implementation of the Distributed
Tree Encoder2. Tweets’ parse trees are obtained
by using Stanford’s CoreNLP3 probabilistic con-
text free grammar parser. Distributed trees are rep-
resented in a space Rd with d = 4000. Then,
the layer l1(synt) is composed of 5512 units. The
layer l2(synt) is a cascade of two dense layers com-
posed, respectively, of 2018 units and 1024 units.
All these tree layers have dropout 0.5 and a ReLU
activation function.

For the Semantic Subnetwork of SyntNN, we
used pretrained word embeddings as Stanford’s
Glove4 and the word embeddings given by the or-
ganizers of the task (Barbieri et al., 2016)5. The
rest of the semantic subnetwork is the following.
The first layer, the input layer I , is composed by

1https://github.com/fvancesco/acmmm2016
2https://github.com/lorenzoferrone/pyDTK
3https://stanfordnlp.github.io/CoreNLP/
4https://nlp.stanford.edu/projects/glove/
5https://github.com/fvancesco/acmmm2016

200/300 neurons. Each neuron take in input a di-
mension of the BoW vector. The number of in-
put neuron varies according to the word embed-
ding used: 200 if the word embedding used is
Glove; 300 if the word embedding used in the
other word embedding cited in the word embed-
ding section. The second layer l1(sem) consists
of 512 neurons, dropout 0.5 and ReLU activation
function. The third layer l2(sem) consists of 1024
neurons, dropout 0.5 and ReLU activation func-
tion.

To understand whether SyntNN positively uses
syntactic information, we compared our system
with two neural networks trained in compara-
ble conditions: (1) BOW-MLP and (2) BiLSTM.
BOW-MLP is basically the Semantic Subnetwork
of SyntNN without the Syntactic Subnetwork.
BiLSTM is a bidirectional LSTM (Huang et al.,
2015), which has been proven effective in many
natural language processing tasks. For the BiL-
STM, we used the same embedding layer used in
SyntNN, we used a recurrent layer of 100 Bidi-
rectional Long Short Term Memory (LSTM) neu-
rons with activation function tanh, recurrent ac-
tivation function hard sigmoid, recurrent dropout
and dropout probability 0.5 and weight l2 regular-
izer with λ = 0.01. The output layer is composed
by 20 neurons and activation function softmax.

All models are implemented using Keras li-
brary (Chollet et al., 2015) and run on tensorflow
(Abadi et al., 2015) back-end on different cuda
GPUs. Models are trained with Adam(Kingma
and Ba, 2014) gradient descent algorithm with
lr = 0.0001, β1 = 0.9, β2 = 0.999. The loss
function used is the categorical crossentropy func-
tion. The BOW-MLP model and SyntNN model
are trained for 140 epochs and batch size = 50,
while the BiLSTM model is trained for 18 epochs
and batch size = 50.

We performed our tests on the emoji prediction
dataset and we used the Macro F1 Score evaluator
provided by the organizers (Barbieri et al., 2018).
No additional datasets have been used.

3.2 Results and Analysis

Initial experiments (Table 1), performed using the
trial dataset as testing set, are extremely positive
with respect to our research question: syntactic
information is definitely important for both lan-
guages and SyntNN seems to be the good way
to represent syntactic relations among words. In

479

Figure 2: Loss comparison on English datasets.

Dataset BOW-MLP BiLSTM SyntNN
en 30.832 47.535 61.777
es 74.077 72.875 80.474

Table 1: Macro F1 score on the Trial Set.

Dataset BOW-MLP BiLSTM SyntNN
en 16.298 25.877 18.385
es 15.427 15.008 14.99

Table 2: Macro F1 score on the Test Set.

fact, SyntNN largely outperformed BOW-MLP in
both languages: 61.777 vs. 30.832 for the English
dataset (en) and 80.474 vs. 74.077 for the Spanish
dataset (es). Moreover syntactic information cap-
tured by SyntNN seems to be totally different and
more effective than the structural information ex-
ploited by recurrent neural networks as BiLSTMs.
SyntNN has different results with respect to BiL-
STM on both datasets with SyntNN outperforming
BiLSTM (61.777 vs. 47.535 for en and 80.474 vs.
72.875 for es). These results seem to show that
syntactic information is useful and distributed tree
embedders are a possible, effective way to take
into consideration syntactic information in multi-
layer perceptrons.

Surprisingly, results on the official test set did
not confirm results on the trial set (Table 2). The
first observation is that Macro F1 scores on the test
set are definitely lower of the results obtained with
different models on the trial set. Moreover, the rel-
ative rank among the models is not fully respected.
In fact, SyntNN outperforms BOW-MLP only for
the en dataset but it is definitely worser than BiL-
STM. Whereas, models are performing similarly
for the es dataset. The question is: Why? What
happened?

Dataset Test Trial
en 44.10% 19.81%
es 40.67% 7.21%

Table 3: Out-of-vocabulary words in the different
datasets.

We then tried to analyze where the poor results
on the test set came from. The first observation is
that unknown words in the test set (Table 3) are
larger than for the trial set for both datasets. The
unknown words on the test set is more than double
with respect to the unknown words in the trial for
the English dataset and more than 4 times for the
Spanish dataset. Test is definitely farer than trial
with respect to the training set. This seems to be
the first reason why results are poorer on the test
set. The second observation is on the degree of
overfitting. In fact, this seems to to be the major
problem of SyntNN and of the other two models
(see Fig. 2). By looking at the loss function, three
models largely overfit with respect to the epochs:
the loss functions on the train set and on the trial
set diverge. This can partially explain poor results.

However, to have a more in-dept analysis we
need to know what and how these networks are
modelling symbols in general and syntactic infor-
mation in particular.

4 Conclusions

In this paper we presented a way to include tra-
ditional syntactic information in neural networks
and we experimented with this model within the
emoji prediction task. Although results on the test
set does not confirm results on the trial set, this
approach is promising as it opens to an higher
explainability of decisions of the neural network
(Zanzotto and Ferrone, 2017).

480

References
Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S. Cor-
rado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dandelion Mané, Rajat Monga, Sherry
Moore, Derek Murray, Chris Olah, Mike Schus-
ter, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,
Kunal Talwar, Paul Tucker, Vincent Vanhoucke,
Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng. 2015. TensorFlow:
Large-scale machine learning on heterogeneous sys-
tems. Software available from tensorflow.org.

Francesco Barbieri, Miguel Ballesteros, and Horacio
Saggion. 2017. Are emojis predictable? In Pro-
ceedings of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Volume 2, Short Papers, pages 105–111.
Association for Computational Linguistics.

Francesco Barbieri, Jose Camacho-Collados,
Francesco Ronzano, Luis Espinosa-Anke, Miguel
Ballesteros, Valerio Basile, Viviana Patti, and
Horacio Saggion. 2018. SemEval-2018 Task 2:
Multilingual Emoji Prediction. In Proceedings of
the 12th International Workshop on Semantic Eval-
uation (SemEval-2018), New Orleans, LA, United
States. Association for Computational Linguistics.

Francesco Barbieri, German Kruszewski, Francesco
Ronzano, and Horacio Saggion. 2016. How cos-
mopolitan are emojis?: Exploring emojis usage and
meaning over different languages with distributional
semantics. In Proceedings of the 2016 ACM on Mul-
timedia Conference, pages 531–535. ACM.

Yoshua Bengio. 2009. Learning deep architectures for
ai. Foundations and Trends in Machine Learning,
2(1):1–127.

François Chollet et al. 2015. Keras. https://
github.com/keras-team/keras.

Michael Collins and Nigel Duffy. 2002. New rank-
ing algorithms for parsing and tagging: Kernels over
discrete structures, and the voted perceptron. In Pro-
ceedings of the Conference of the Annual Meeting of
the Association of Computational Linguistics.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research,
12:2493–2537.

Nello Cristianini and John Shawe-Taylor. 2000. An In-
troduction to Support Vector Machines and Other
Kernel-based Learning Methods. Cambridge Uni-
versity Press.

Sanjoy Dasgupta and Anupam Gupta. 1999. An ele-
mentary proof of the johnson-linderstrauss lemma.
Technical Report TR-99-006, ICSI, Berkeley, Cali-
fornia.

Lorenzo Ferrone and Fabio Massimo Zanzotto. 2014.
Towards syntax-aware compositional distributional
semantic models. In COLING 2014, 25th Inter-
national Conference on Computational Linguistics,
Proceedings of the Conference: Technical Papers,
August 23-29, 2014, Dublin, Ireland, pages 721–
730.

Geoffrey E. Hinton, James L. McClelland, and
David E. Rumelhart. 1986. Distributed representa-
tions. In D. E. Rumelhart and J. L. McClelland, ed-
itors, Parallel Distributed Processing: Explorations
in the Microstructure of Cognition. Volume 1: Foun-
dations. MIT Press, Cambridge, MA.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirec-
tional lstm-crf models for sequence tagging. CoRR,
abs/1508.01991.

Sergey Ioffe and Christian Szegedy. 2015. Batch
normalization: Accelerating deep network train-
ing by reducing internal covariate shift. CoRR,
abs/1502.03167.

W. Johnson and J. Lindenstrauss. 1984. Extensions of
lipschitz mappings into a hilbert space. Contemp.
Math., 26:189–206.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Tony A. Plate. 1994. Distributed Representations and
Nested Compositional Structure. Ph.D. thesis.

Richard Socher, Eric H. Huang, Jeffrey Pennington,
Andrew Y. Ng, and Christopher D. Manning. 2011.
Dynamic pooling and unfolding recursive autoen-
coders for paraphrase detection. In Advances in
Neural Information Processing Systems 24.

F. M. Zanzotto and L. Ferrone. 2017. Can we explain
natural language inference decisions taken with neu-
ral networks? inference rules in distributed repre-
sentations. In 2017 International Joint Conference
on Neural Networks (IJCNN), pages 3680–3687.

Fabio Massimo Zanzotto and Lorenzo Dell’Arciprete.
2012. Distributed tree kernels. In Proceedings of In-
ternational Conference on Machine Learning, pages
193–200.

Fabio Massimo Zanzotto, Lorenzo Ferrone, and Xavier
Carreras. 2015. Decoding distributed tree struc-
tures. In Statistical Language and Speech Process-
ing, pages 73–83, Cham. Springer International Pub-
lishing.

481

