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Abstract

In this paper we present a deep-learning model
that competed at SemEval-2018 Task 2 “Mul-
tilingual Emoji Prediction”. We participated
in subtask A, in which we are called to pre-
dict the most likely associated emoji in En-
glish tweets. The proposed architecture relies
on a Long Short-Term Memory network, aug-
mented with an attention mechanism, that con-
ditions the weight of each word, on a “con-
text vector” which is taken as the aggregation
of a tweet’s meaning. Moreover, we initial-
ize the embedding layer of our model, with
word2vec word embeddings, pretrained on a
dataset of 550 million English tweets. Finally,
our model does not rely on hand-crafted fea-
tures or lexicons and is trained end-to-end with
back-propagation. We ranked 2nd out of 48
teams.

1 Introduction

Emojis play an important role in textual commu-
nication, as they function as a substitute for non-
verbal cues, that are taken for granted in face-to-
face communication, thus allowing users to con-
vey emotions by means other than words. Despite
their large appeal in text, they haven’t received
much attention until recently. Former works,
mostly consider their semantics (Aoki and Uchida,
2011; Espinosa-Anke et al., 2016; Barbieri et al.,
2016b,a; Ljubešić and Fišer, 2016; Eisner et al.,
2016) and only recently their role in social media
was explored (Barbieri et al., 2017; Cappallo et al.,
2018). In SemEval-2018 Task 2: “Multilingual
Emoji Prediction” (Barbieri et al., 2018), given a
tweet, we are asked to predict its most likely asso-
ciated emoji.

thanks for always making me feel like family

! love you guys ! …

Label:  Top 5: 

i better get a bunch of fire type pokemon

Label:  Top 5: 

Figure 1: Attention heat-map visualization. The
color intensity corresponds to the weight given to
each word by the self-attention mechanism.

In this work, we present a near state of the art
approach for predicting emojis in tweets, which
outperforms the best present work (Barbieri et al.,
2017). For this purpose, we employ an LSTM
network augmented with a context-aware self-
attention mechanism, producing a feature repre-
sentation used for classification. Moreover, the at-
tention mechanism helps us make our model’s be-
havior more interpretable, by examining the distri-
bution of the attention weights for a given tweet.
To this end, we provide visualizations with the dis-
tributions of the attention weights.

2 Overview

Figure 3 provides a high-level overview of our ap-
proach that consists of three main steps: (1) The
text preprocessing step, which is common both for
unlabeled data and the task’s dataset, (2) the word
embeddings pre-training step, where we train cus-
tom word embeddings on a big collection of unla-
beled Twitter messages and (3) the model training
step where we train the deep learning model.
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Task definition. In subtask A, given an English
tweet, we are called to predict the most likely asso-
ciated emoji, from the 20 most frequent emojis in
English tweets according to (Barbieri et al., 2017).
The training dataset consists of 500k tweets, re-
trieved from October 2015 to February 2017 and
geolocalized in the United States. Fig. 2 shows the
classes (emojis) and their distribution.

22.42% 10.34% 10.18% 5.48% 4.91%

4.67% 4.26% 3.64% 3.40% 3.23%

3.22% 3.04% 2.90% 2.60% 2.70%

2.68% 2.61% 2.58% 2.66% 2.48%

Figure 2: Distribution of emoji (class) labels.

2.1 Data

Unlabeled Dataset. We collected a dataset of 550
million archived English Twitter messages, from
Apr. 2014 to Jun. 2017. This dataset is used for
(1) calculating word statistics needed in our text
preprocessing pipeline (Section 2.2) and (2) train-
ing word2vec word embeddings.
Word Embeddings. We leverage our unlabeled
dataset to train Twitter-specific word embeddings.
We use the word2vec (Mikolov et al., 2013) al-
gorithm, with the skip-gram model, negative sam-
pling of 5 and minimum word count of 20, utiliz-
ing the Gensim’s (Řehůřek and Sojka, 2010) im-
plementation. The resulting vocabulary contains
800, 000 words. The pre-trained word embeddings
are used for initializing the first layer (embedding
layer) of our neural networks.

2.2 Preprocessing1

We utilized the ekphrasis2 tool (Baziotis et al.,
2017) as a tweet preprocessor. The preprocessing

1Significant portions of the systems submitted to SemEval
2018 in Tasks 1, 2 and 3, by the NTUA-SLP team are shared,
specifically the preprocessing and portions of the DNN archi-
tecture. Their description is repeated here for completeness.

2github.com/cbaziotis/ekphrasis
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Figure 3: High-level overview of our approach

steps included in ekphrasis are: Twitter-specific
tokenization, spell correction, word normaliza-
tion, word segmentation (for splitting hashtags)
and word annotation.

Tokenization. Tokenization is the first fundamen-
tal preprocessing step and since it is the basis for
the other steps, it immediately affects the qual-
ity of the features learned by the network. Tok-
enization on Twitter is challenging, since there is
large variation in the vocabulary and the expres-
sions which are used. There are certain expres-
sions which are better kept as one token (e.g. anti-
american) and others that should be split into sepa-
rate tokens. Ekphraris recognizes Twitter markup,
emoticons, emojis, dates (e.g. 07/11/2011, April
23rd), times (e.g. 4:30pm, 11:00 am), currencies
(e.g. $10, 25mil, 50e), acronyms, censored words
(e.g. s**t), words with emphasis (e.g. *very*) and
more using an extensive list of regular expressions.

Normalization. After tokenization we apply a
series of modifications on extracted tokens, such
as spell correction, word normalization and seg-
mentation. Specifically for word normalization we
lowercase words, normalize URLs, emails, num-
bers, dates, times and user handles (@user). This
helps reducing the vocabulary size without losing
information. For spell correction (Jurafsky and
James, 2000) and word segmentation (Segaran and
Hammerbacher, 2009) we use the Viterbi algo-
rithm. The prior probabilities are initialized us-
ing uni/bi-gram word statistics from the unlabeled
dataset. Table 1 shows an example text snippet and
the resulting preprocessed tokens.

original The *new* season of #TwinPeaks is coming on May 21, 2017. CANT WAIT \o/ !!! #tvseries #davidlynch :D
processed the new <emphasis> season of <hashtag> twin peaks </hashtag> is coming on <date> . cant <allcaps> wait

<allcaps> <happy> ! <repeated> <hashtag> tv series </hashtag> <hashtag> david lynch </hashtag> <laugh>

Table 1: Example of our text processor
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2.3 Recurrent Neural Networks
We model the Twitter messages using Recurrent
Neural Networks (RNN). RNNs process their in-
puts sequentially, performing the same operation,
ht = fW (xt, ht−1), on every element in a se-
quence, where ht is the hidden state t the time
step, and W the network weights. We can see that
hidden state at each time step depends on previous
hidden states, thus the order of elements (words)
is important. This process also enables RNNs to
handle inputs of variable length.

RNNs are difficult to train (Pascanu et al.,
2013), because gradients may grow or decay ex-
ponentially over long sequences (Bengio et al.,
1994; Hochreiter et al., 2001). A way to overcome
these problems is to use more sophisticated vari-
ants of regular RNNs, like Long Short-Term Mem-
ory (LSTM) networks (Hochreiter and Schmidhu-
ber, 1997) or Gated Recurrent Units (GRU) (Cho
et al., 2014), which ensure better gradient flow
through the network.
Self-Attention Mechanism. RNNs update their
hidden state hi as they process a sequence and the
final hidden state holds a summary of the infor-
mation in the sequence. In order to amplify the
contribution of important words in the final repre-
sentation, a self-attention mechanism (Bahdanau
et al., 2014) can be used (Fig. 4). In normal RNNs,
we use as representation r of the input sequence
its final state hN . However, using an attention
mechanism, we compute r as the convex combi-
nation of all hi, with weights ai, which signify
the importance of each hidden state. Formally:
r =

∑N
i=1 aihi,where

∑N
i=1 ai = 1, and ai > 0.

3 Model Description

We use a word-level BiLSTM architecture to
model semantic information in tweets. We also
propose an attention mechanism, which conditions
the weight of hi on a “context vector” that is taken
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Figure 4: Comparison between the regular RNN
and the RNN with attention.

as the aggregation of the tweet meaning.
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Figure 5: Architecture of the proposed model.

Embedding Layer. The input to the network is a
Twitter message, treated as a sequence of words.
We use an embedding layer to project the words
w1, w2, ..., wN to a low-dimensional vector space
RW , whereW the size of the embedding layer and
N the number of words in a tweet. We initialize
the weights of the embedding layer with our pre-
trained word embeddings.
BiLSTM Layer. A LSTM takes as input the
words of a tweet and produces the word annota-
tions h1, h2, ..., hN , where hi is the hidden state
of the LSTM at time-step i, summarizing all the
information of the sentence up to wi. We use bidi-
rectional LSTM (BiLSTM) in order to get word
annotations that summarize the information from
both directions. A BiLSTM consists of a forward
LSTM

−→
f that reads the sentence from w1 to wN

and a backward LSTM
←−
f that reads the sentence

from wN to w1. We obtain the final annotation for
each word, by concatenating the annotations from
both directions, hi =

−→
hi ‖

←−
hi , hi ∈ R2L where

‖ denotes the concatenation operation and L the
size of each LSTM.
Context-aware Self-Attention Layer. Even
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though the hidden state hi of the LSTM captures
the local context up to word i, in order to better es-
timate the importance of each word given the con-
text of the tweet we condition hidden state on a
context vector. The context vector is taken as the
average of hi: c =

1

N

∑N
1 hi. The context-aware

annotations ui are obtained as the concatenation
of c and hi: ui = hi ‖ c. The attention weights ai
are computed as the softmax of the attention layer
outputs ei. W and b are the trainable weights and
biases of the attention layer:

ei = tanh(Wui + b) (1)

ai =
exp(ei)∑N
t=1 exp(et)

(2)

The final representation r is again taken as the con-
vex combination of the hidden states.

r =
N∑

i=1

aihi, r ∈ R2L (3)

Output Layer. We use the representation r as
feature vector for classification and we feed it to
a fully-connected softmax layer with L neurons,
which outputs a probability distribution over all
classes pc as described in Eq. 4:

pc =
eWr+b

∑
i∈[1,L](e

Wir+bi)
(4)

where W and b are the layer’s weights and biases.

3.1 Regularization
In both models we add Gaussian noise to the
embedding layer, which can be interpreted as a
random data augmentation technique, that makes
models more robust to overfitting. In addition
to that we use dropout (Srivastava et al., 2014)
and we stop training after the validation loss has
stopped decreasing (early-stopping).

4 Experiments and Results

4.1 Experimental Setup
Class Weights. In order to deal with class imbal-
ances, we apply class weights to the loss function
of our models, penalizing more the misclassifica-
tion of underrepresented classes. We weight each
class by its inverse frequency in the training set.
Training We use Adam algorithm (Kingma and
Ba, 2014) for optimizing our networks, with mini-
batches of size 32 and we clip the norm of the gra-
dients (Pascanu et al., 2013) at 1, as an extra safety

measure against exploding gradients. For devel-
oping our models we used PyTorch (Paszke et al.,
2017) and Scikit-learn (Pedregosa et al., 2011).
Hyper-parameters. In order to find good hyper-
parameter values in a relative short time (com-
pared to grid or random search), we adopt the
Bayesian optimization (Bergstra et al., 2013) ap-
proach, performing a time-efficient search in the
space of all hyper-parameter values. The size of
the embedding layer is 300, and the LSTM layers
300 (600 for BiLSTM). We add Gaussian noise
with σ = 0.05 and dropout of 0.1 at the embed-
ding layer and dropout of 0.3 at the LSTM layer.
Results. The dataset for Task 2 was introduced in
(Saggion et al., 2017), where the authors propose a
character level model with pretrained word vectors
that achieves an F1 score of 34%. Our ranking as
shown in Table 2 was 2/49, with an F1 score of
35.361%, which was the official evaluation metric,
while team TueOslo achieved the first position
with an F1 score of 35.991%. It should be noted
that only the first 2 teams managed to surpass the
baseline model presented in (Saggion et al., 2017).

In Table 3 we compare the proposed Context-
Attention LSTM (CA-LSTM) model against 2
baselines: (1) a Bag-of-Words (BOW) model with
TF-IDF weighting and (2) a Neural Bag-of-Words
(N-BOW) model, where we retrieve the word2vec
representations of the words in a tweet and com-
pute the tweet representation as the centroid of
the constituent word2vec representations. Both
BOW and N-BOW features are then fed to a linear
SVM classifier, with tuned C = 0.6. The CA-
LSTM results in Table 3 are computed by aver-
aging the results of 10 runs to account for model
variability. Table 3 shows that BOW model out-
performs N-BOW by a large margin, which may
indicate that there exist words, which are very cor-
related with specific classes and their occurrence
can determine the classification result. Finally, we
observe that CA-LSTM significantly outperforms
both baselines.

Fig. 6 shows the confusion matrix for the 20

# Team Name Acc Prec Rec F1
1 TueOslo 47.094 36.551 36.222 35.991
2 NTUA-SLP 44.744 34.534 37.996 35.361
3 Unknown 45.548 34.997 33.572 34.018
4 Liu Man 47.464 39.426 33.695 33.665

Table 2: Official Results for Subtask A
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f1 accuracy recall precision
BOW 0.3370 0.4468 0.3321 0.3525
N-BOW 0.2904 0.4120 0.2849 0.3150
CA-LSTM 0.3564 0.4482 0.3885 0.3531

Table 3: Comparison against baselines

Figure 6: Confusion matrix

emojis. Observe that our model is more likely to
misclassify a rare class as an instance of one of the
4 more frequent classes, even after the inclusion
of class weights in the loss function (Section 4.1).
Furthermore, we observe that heart or face emojis,
which are more ambiguous, are easily confusable
with each other. However, as expected this in not
the case for emojis like the US flag or the Christ-
mas tree, as they are tied with specific expressions.
Attention Visualization. The attention mecha-
nism not only improves the performance of the
model, but also makes it interpretable. By using
the attention scores assigned to each word annota-
tion, we can investigate the behavior of the model.
Figure 7 shows how the attention mechanism fo-
cuses on each word in order to estimate the most
suitable emoji label.

5 Conclusion

In this paper, we present a deep learning system
based on a word-level BiLSTM architecture and
augment it with contextual attention for SemEval
Task 2: “Multilingual Emoji Prediciction” (Bar-
bieri et al., 2018). Our work achieved excellent
results, reaching the 2nd place in the competition
and outperforming the state-of-the-art reported in
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Figure 7: Attention Visualizations

the bibliography (Barbieri et al., 2017). The per-
formance of our model could be further boosted,
by utilizing transfer learning methods from larger,
weakly annotated, datasets. Moreover, the joint
training of word- and character-level models can
be tested for further performance improvement.

Finally, we make both our pretrained word
embeddings and the source code of our models
available to the community3, in order to make our
results easily reproducible and facilitate further
experimentation in the field.
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