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Abstract

This paper describes our submissions to Task 2
in SemEval 2018, i.e., Multilingual Emoji Pre-
diction. We first investigate several traditional
Natural Language Processing (NLP) features,
and then design several deep learning model-
s. For subtask 1: Emoji Prediction in English,
we combine two different methods to repre-
sent tweet, i.e., supervised model using tradi-
tional features and deep learning model. For
subtask 2: Emoji Prediction in Spanish, we on-
ly use deep learning model.

1 Introduction

Visual icons play a crucial role in providing infor-
mation about the extra level of social media infor-
mation. SemEval 2018 shared task for researcher-
s to predict, given a tweet in English or Spanish,
its most likely associated emoji (Barbieri et al.,
2018, 2017) (Task 2, Multilingual Emoji Predic-
tion), which is organized into two optional subtask
(subtask 1 and subtask 2) respectively in English
and Spanish.

For subtask 1, we adopt a combination model to
predict emojis, which consists of traditional Natu-
ral Language Processing (NLP) methods and deep
learning methods. The results returned by the clas-
sifier with traditional NLP features, by the neural
network model and by the combination model are
voted to get the final result. For subtask 2, we only
use deep learning model.

2 System Description

For subtask 1, we explore three different methods
i.e., using traditional NLP features to learn a su-
pervised machine learning-based classifier, learn-
ing a deep learning model to make prediction
and combine features captured by neural networks
with traditional NLP features to train a supervised
machine learning-based classifier. For subtask 2,

we simply implement deep learning method to
make prediction.

2.1 Traditional NLP Features
In this task, we extract the following three types
of features to capture effective information from
the given tweets, i.e., linguistic features, sentiment
lexicon features and tweet specific features.

2.1.1 Linguistic Features
• N-grams: We extract 3 types of Bag-of-

Words features as N-grams features, where N
= 1,2,3 (i.e., unigram, bigram, and trigram
features).

• POS: Generally, the sentences carrying sub-
jective emotions are inclined to contain more
adjectives and adverbs while the sentences
without sentiment orientation would contain
more nouns. Thus, we extract POS tag from
the sentence as features with the Bag-of-
Words form.

• Correlation Degree: For each word appear in
training data, the ratio of the number of oc-
currences under each class and the total oc-
currences is counted as the correlation degree
of the word to a certain class. When the fea-
ture is created, the sum of the correlation de-
gree of words in tweet is counted as the cor-
relation degree of the tweet to a certain class:

CorrDeg(s, l) =

|s|∑

t=1

O(wt, cl)∑N
i O(wt, ci)

Where |s| is the length of tweet and N is
the number of classes, wt means tth word in
tweet and ci means ith class, O(wt, ci) de-
notes the number of tweets of ci that contain
wt. The dimension of this feature is equal
to the number of classes, value is correlation
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degree of the tweet to each class, i.e., Cor-
rDeg(s,l).

2.1.2 Sentiment Lexicon Features (SentiLexi)
We also extract sentiment lexicon features (Sen-
tiLexi) to capture the sentiment information of the
given sentence. Given a tweet, we first convert al-
l words into lowercase. Then on each sentiment
lexicon, we calculate the following six scores for
one message: (1) the ratio of positive words to all
words, (2) the ratio of negative words to all word-
s, (3) the maximum sentiment score, (4) the min-
imum sentiment score, (5) the sum of sentiment
scores, (6) the sentiment score of the last word in
tweet. If the word does not exist in one sentiment
lexicon, its corresponding score is set to 0. The
following 8 sentiment lexicons are adopted in our
systems: Bing Liu lexicon1, General Inquirer lex-
icon2, IMDB3, MPQA4, NRC Emotion Sentiment
Lexicon5, AFINN6, NRC Hashtag Sentiment Lexi-
con7, and NRC Sentiment140 Lexicon8.

2.1.3 Tweet Specific Features
• Punctuation: Considering that users often

use exclamation marks and question marks
to express strongly surprised and questioned
feelings, we extract 7-dimensions punctua-
tion features by recording rules of punctua-
tion marks in the tweets.

• All-caps: One binary feature is to check
whether this tweet has words in uppercase.

• Bag-of-Hashtags: We construct a vocabulary
of hashtags appearing in the training data and
then adopt the bag-of-hashtags method for
each tweet.

2.2 Deep Learning Modules
In addition to manually constructing features, we
build deep neural models to capture the semantics
of the text. Figure 1 shows the network structure
of our model. The input of the network is a tweet,
which is a sequence of words. The output of the
network contains class elements.

1http://www.cs.uic.edu/liub/FBS/sentiment-analysis.html
2http://www.wjh.harvard.edu/inquirer/homecat.htm
3http://www.aclweb.org/anthology/S13-2067
4http://mpqa.cs.pitt.edu/
5http://www.saifmohammad.com/WebPages/lexicons.html
6http://www2.imm.dtu.dk/pubdb/views/publication

details.php?id=6010
7http://www.umiacs.umd.edu/saif/WebDocs/NRC-

Hashtag-Sentiment-Lexicon-v0.1.zip
8http://help.sentiment140.com/for-students/

Figure 1: Deep learning model architecture.

2.2.1 Word-Level Representations
We use pre-trained word embedding concatenat-
ed with char embedding, POS embedding and N-
ER embedding obtaining a final representation for
each word type, which are learned together with
the updates to the model.

• Word Embedding: Word embedding is a
continuous-valued vector representation for
each word, which can capture meaningful
syntactic and semantic regularities. In this
task, we use the 300-dimensional word vec-
tors pre-trained on Twitter provided by Se-
mEval task organizers, available in SWM9

• Char Embedding: We randomly initialize the
representation of the character and compute
character-based continuous-space vector em-
beddings of the words in tweets by bidirec-
tional LSTM. The dimension of char embed-
ding is 50.

• POS Embedding: We randomly initialize the
representation of the POS tag in tweet with a
vector size of 50.

• NER Embedding: We also randomly initial-
ize the representation of the NER tag in tweet
with a vector size of 50.

2.2.2 Sentence-Level Representations
• Bi-Directional LSTM: We apply a recurrent

structure to capture contextual information as
far as possible when learning word represen-
tations, to model the tweet with both of the

9https://github.com/fvancesco/acmmm2016
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preceeding and following contexts, we ap-
ply a Bi-directional Long Short-term Memo-
ry Networks (BiLSTM, Graves et al. (2005))
architecture as shown in Figure 1.

• Attention Mechanism: Considering not al-
l words contribute equally to the representa-
tion of the sentence meaning, we introduce
attention mechanism (Bahdanau et al., 2014)
to extract such words that are important to the
meaning of the sentence and aggregate the
representation of those informative words to
form a sentence vector.

We first use BiLSTM and Attention Mechanism
to obtain sentence-level representations and then
concatenate it with several effective NLP features.
At last, we use a Multi-layer Perceptron (MLP)
and output the probability of emoji label based on
a softmax function. The BiLSTM has a hidden
size of 512. The MLP have 1 hidden layer of size
200 and relu non-linearity.

To learn model parameters, we minimize the
KL-divergence between the outputs and gold la-
bels. We adopt Adam (Kingma and Ba, 2014) as
optimization method and set learning rate of 0.01.

3 Experimental Settings

3.1 Datasets
For training sets, the organizers provide only the
list of tweet ID and a script for all participants
to collect tweets. However, since not all tweet-
s are available when downloading, participants
may collect slightly different numbers of tweet-
s for training sets. In addition, we find that the
crawled training sets and the trial sets provided by
the organizers have 37.26% overlap in English and
71.16% in Spanish. So we remove the duplicate
data and combine train and trial sets to perform a
3-fold cross-validation. Table 1 shows the statis-
tics of the tweets we collect in our experiments. In
subtask 1, the number of class 0 is the largest, ac-
counting for 22.28%, followed by class 1 and class
2, respectively, 10.37% and 10.20%, and the oth-
er 17 classes distribute between 2.46% and 5.51%.
Subtask 2 has a similar data distribution.

3.2 Data Preprocessing
Firstly, we convert unicode encoding into cor-
responding characters, punctuation, emoticons.
Then we use slangs10 to transform the informal

10https://github.com/haierlord/resource/blob/master/slangs

label
Dataset Subtask 1 Subtask 2

0 116693 (22.28%) 20495 (20.41%)
1 54313 (10.37%) 13688 (13.63%)
2 53432 (10.20%) 9342 (9.30%)
3 28855 (5.51%) 6859 (6.83%)
4 25778 (4.92%) 6535 (6.51%)
5 24475 (4.67%) 4765 (4.43%)
6 22301 (4.26%) 4444 (4.42%)
7 19236 (3.67%) 3868 (3.85%)
8 17908 (3.42%) 3687 (3.67%)
9 16996 (3.25%) 3544 (3.53%)

10 16755 (3.20%) 3399 (3.16%)
11 16052 (3.07%) 2943 (2.93%)
12 15167 (2.90%) 2826 (2.81%)
13 13650 (2.61%) 2727 (2.72%)
14 14136 (2.70%) 2629 (2.62%)
15 13963 (2.67%) 2564 (2.55%)
16 13702 (2.62%) 2618 (2.61%)
17 13474 (2.57%) 2551 (2.54%)
18 13867 (2.65%) 2552 (2.54%)
19 12900 (2.46%) –

total 523653 100440

Table 1: The statistics of data sets in combination of
training sets and trial sets which we used to perform
a 3-fold cross-validation. The numbers in brackets are
the percentages of different classes in each data set.

writing to regular forms, e.g., “LOL” replaced by
“laugh out loud”. And we recover the elongat-
ed words to their original forms, e.g., “soooooo”
to “so”. Finally, we implement tokenization, POS
tagging, named entity recognizing(NER) with the
aid of Stanford CoreNLP tools (Manning et al.,
2014).

3.3 Learning Algorithm

Considering the large dimension of the features
designed by traditional NLP methods, we use
learning algorithms of Logistic Regression(LR) to
build classification models, which is supplied in
Liblinear11.

3.4 Evaluation Metrics

The official evaluation measure is Macro F-score,
which would inherently mean a better sensitivity
to the use of emojis in general, rather than for in-
stance overfitting a model to do well in the three or
four most common emojis of the test data. Macro
F-score can be defined as simply the average of the
individual label-wise F-scores.

11https://www.csie.ntu.edu.tw/ cjlin/liblinear/
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4 Experiments on Training Data

4.1 Comparison of NLP Features
Table 2 lists the comparison of different con-
tributions made by different features on cross-
validation with Logistic Regression algorithm.
From the results in Table 2, we observe the fol-
lowing findings:

(1) The combination of Uigram, Bigram, Cor-
relation Degree, POS and SentiLexi achieves the
best performance (i.e., 34.63).

(2) Correlation Degree feature makes more con-
tributes than other features, as it reflects the degree
of relevance between tweets and emoji label.

(3) Bigram feature makes contribution and is
more effective than unigram feature. The reason
may be that bigram feature can capture more con-
textual information and word orders.

(4) SentiLexi feature also makes contribution,
which indicates that SentiLexi features are ben-
eficial not only in traditional sentiment analysis
tasks, but also in predicting the emoji in tweet.

Features Fmacro change
Best Features 34.63 -

-Correlation Degree 30.59 -4.04
-Bigram 33.38 -1.25

-SentiLexi 33.63 -1.00
-POS 33.91 -0.72

-Uigram 34.22 -0.41

Table 2: Performance of different features on subtask
1. - means to exclude some features.

4.2 Comparison of Deep Learning Modules
Table 3 shows the results of different deep learn-
ing models described before. From Table 3, we
observe the findings as follows:

(1) We explore the performance of three d-
ifferent deep learning model: Neural Bag-of-
Words(NBOW, Iyyer et al. (2015)), Convolu-
tional Neural Network (CNN, Collobert et al.
(2011)) and Bi-directional Long Short-term Mem-
ory Networks (LSTM, Hochreiter and Schmidhu-
ber (1997)). All models used only pre-trained
word embedding to compare. Clearly, BiLSTM
outperformed other models in this task, and our
deep learning model is based on BiLSTM.

(2) POS embedding makes more contribution
than other word-level representations. Since POS
embedding can learn emotional tendencies, it is
beneficial for tweet emojis prediction.

(3) The last two rows results shows that com-
bine both SentiLexi and Punctuation features with
sentence representations to train the deep learning
model can make contribution.

Models Subtask 1 Subtask 2
NBOW 23.73 18.67
CNN 23.64 18.91

BiLSTM 25.64 19.32
.+Char 25.66 (+0.02) 19.56
.+NER 26.57 (+0.91) –
.+POS 30.55 (+3.98) –

.+Attention 30.74 (+0.19) –
.+Punctuation 32.10 (+1.36) –
.+SentiLexi 32.59 (+0.49) –

Table 3: Performance of different deep learning mod-
els on subtask 1 and subtask 2. .+ means to add cur-
rent module to the previous model. The numbers in
the brackets are the performance increments compared
with the previous results.

4.3 Combination and Ensemble
For subtask 1, we also use the trained neural net-
works described in 4.2 to capture the features
of tweets and combine it with traditional NLP
features to train a Logistic Regression classifier,
named Combination Model.

Table 4 shows the results of different methods.
We find that combination model improved the per-
formance and the ensemble of 3 methods achieve
the best result. It suggests that the traditional NLP
methods and the deep learning models are com-
plementary to each other and their combination
achieves the best performance.

Methods Fmacro

Traditional NLP Features 34.63
Deep Learning Model 32.59
Combination Model 35.21
Ensemble Model 35.57

Table 4: Performance of different methods on subtask
1.

4.4 System Configuration
Based on above experimental analysis, the two
system configurations on test data sets are listed
as followings:

(1) subtask 1: Logistic Regression with best
NLP feature sets is used as model 1. Deep learn-
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ing model is used as model 2. Logistic Regres-
sion with NLP features and the feature captured by
deep learning model is used as model 3. Ensemble
of three models is used as final submission.

(2) subtask 2: Deep learning model with word
embedding and char embedding is used as submis-
sion.

5 Results on Test Data

Subtask 1 Subtask 2
Our system 33.35 (5) 16.41 (7)

Rank 1 35.99 (1) 22.36 (1)
Rank 2 35.36 (2) 18.73 (2)
Rank 3 34.02 (3) 18.18 (3)

Table 5: Performance of our systems and the top-
ranked systems for two subtasks on test datasets. The
numbers in the brackets are the official rankings.

Table 5 shows the results on test datasets. From
Table 5, we find that our system achieves almost
the same performance as the cross-validation. The
low performance of this task illustrates the diffi-
culty of the task itself, especially the Spanish task.

6 Conclusion

In this paper, we extract several effective tradi-
tional NLP features, design different deep learn-
ing models and build a model in combination of
traditional NLP features and deep learning method
together. The extensive experimental results show
that this combination improves the performance.

For the future work, we consider to focus on de-
veloping a neural networks model to handle unbal-
anced data and improve the performance of con-
fusing labels.
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