UMDuluth-CS8761 at SemEval-2018 Task 2:
Emojis: Too many Choices? &

Dennis Asamoah Owusu & Jonathan Beaulieu
Department of Computer Science
University of Minnesota Duluth
Duluth, MN 55812 USA
{asamo012,beau0307}@d.umn.edu
https://github.com/derpferd/semeval-2018-task2/

Abstract

In this paper, we present our system for assign-
ing an emoji to a tweet based on the text. Each
tweet was originally posted with an emoji
which the task providers removed. Our task
was to decide out of 20 emojis, which origi-
nally came with the tweet. Two datasets were
provided - one in English and the other in
Spanish. We treated the task as a standard clas-
sification task with the emojis as our classes
and the tweets as our documents. Our best per-
forming system used a Bag of Words model
with a Linear Support Vector Machine as its’
classifier. We achieved a macro F1 score of
32.73% for the English data and 17.98% for
the Spanish data.

1 Introduction

An Al system that can associate text with appro-
priate emojis could be useful for generating con-
tent that is sparkled with emojis among other uses
(Barbieri et al., 2017). Given only the text from
a tweet in English or Spanish, the SemEval (Bar-
bieri et al., 2018) task was to determine the emoji
that was in the original tweet. To learn how users
associate emojis with text, a dataset comprised of
489,609 tweets in English and 98,289 tweets in
Spanish was provided. Each tweet had a corre-
sponding label representing the emoji that was in
the tweet. The labels were assigned based on the
frequency of the emoji, 0 being assigned to the
most frequent emoji. The total number of labels
was 20 for the English data and 19 for the Spanish
data. We classified the tweets, our documents, by
their emojis, our classes. We viewed the emojis as
approximations of the sentiment expressed in the
text.

For our baseline, we implemented a Bag of
Words model using a Bernoulli Naive Bayes clas-
sifier. We analyzed the results and used the in-
sights to implement our final system, which used

400

a Linear Support Vector machine for classification
and also used a Bag of Words model to represent
each document. This system performed better than
our baseline by ~3.5 percentage points for our En-
glish data and ~1.5 percentage points for our Span-
ish data. It also performed better than several neu-
ral network models we experimented with. Our
macro F1 score were 32.73% and 17.98% for our
English data and Spanish data respectively.

2 Baseline

For our Baseline, we used a Bag of Words model
(BOW) with a Bernoulli Naive Bayes Classi-
fier. We also implemented a Most Frequent Class
Model (MFC) and a Random Model (RAND) to
help draw insights from our baseline. The results
of these models for the English and Spanish data
are shown in Table 1 and Table 2 respectively. The
tables show mean and standard deviation over the
folds using 10-fold cross-validation. We reserved
10% of the data for testing and trained on the re-
maining 90% for each fold. We followed the same
approach in all our experiments. The Micro F1
scores are heavily influenced by the performance
of the dominant classes. Since ~21% of the tweets
belong to label O (¥) for English, the micro F1
score was ~21% for the MFC model. Macro F1
scores, on the other hand, give equal weight to
each class, since they average the F1 scores of
each class.

We chose Bernoulli style Naive Bayes because
it generally works better for short texts (e.g.
Tweets) than its Multinomial counterpart (Man-
ning et al., 2008). We empirically verified this
with our task and data. To implement this model,
we used the NLTK library for preprocessing and
the scikit-learn framework for the model training
(Bird et al., 2009; Pedregosa et al., 2011).

Our data pipeline consisted of four steps: Tok-

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 400-404
New Orleans, Louisiana, June 5-6, 2018. ©2018 Association for Computational Linguistics

Macro F1 Micro F1

Mean | S-Dev | Mean | S-Dev
BOW | 29.1 0.2 42.1 0.3
MFC 1.8 0.0 21.7 0.2
RAND | 4.5 0.1 5.0 0.1

Table 1: Baseline results for English

enization, Bagination, Tf-idf transform and Train-
ing. For tokenization we used NLTK’s Tweet-
Tokenizer function. We configured it to convert
all text to lowercase, crop repeating characters
to a max of 3 and remove tweeter handles. We
created the BOW by making a set of the tokens
which appeared per the document. The next step
was to normalize the frequency data into term-
frequency times inverse document-frequency(tf-
idf) representation. Finally, we trained a Bernoulli
Naive Bayes classifier on this data.

2.1 Insights from BOW English Results

For the English tweets, the difference between the
macro and micro F-scores for our Bernoulli model
lies in the fact that the distribution of classes is
very unbalanced. This is demonstrated from the
results shown in Table 1.

Table 3 shows a confusion matrix for some la-
bels of our BOW results for the English data. A
mapping of select labels to emojis and their de-
scriptions is shown in Table 4. The matrix illus-
trates the struggles of the BOW model. Gener-
ally many tweets are misclassified as = and & .
Take = for instance. While only 332 tweets were
correctly labeled, 558 tweets and 385 tweets that
should have been labeled = were labeled ® and
@ respectively. This misclassification of = as «
and @ is not only the case for the selected classes
represented in the matrix but also for most of the
classes. Emojis @ and # illustrate another pattern
we observed. 653 out of 2312 tweets that should
have been classified as © were misclassified as = .
Since @ is a smiling face with smiling eyes and #
is smiling face with heart eyes, we inferred that the
model might have trouble discriminating between
classes with similar semantics.

That inference is supported by the fact that the
model also struggles to discriminate between & , a
camera, and i , a camera with flash. 458 tweets
out of 1344 tweets (34%) that should have been
labeled as @i where incorrectly labeled as i . This
is more significant when one notes that only 148
of i tweets (11%) where labeled correctly.

401

Macro F1 Micro F1

Mean | S-Dev | Mean | S-Dev
BOW | 16.5 04 29.6 04
MFC 1.7 0.0 20.0 04
RAND | 4.8 0.2 5.5 0.2

Table 2: Baseline results for Spanish

v L1 8 S ° Total

8637 | 618 10752

® 2358 | 832 5145
=l 1022 | 2718 5114
S 653 | 437 | 251 | 139 || 2313
= 558 | 385 332 || 2092

Table 3: BOW Confusion Matrix for English. We have
choose to leave some numbers out to prevent distrac-
tion from the patterns we are trying to show. All left
out numbers are negligible.

To measure the impact of these semantically
similar classes on our model, we collapsed classes
that were semantically similar and reran the BOW
model. All of the “heart” emojis were put into
a single class; the “smiling” emojis (except the
hearty eyes one) were put into another class; the
“camera” emojis were collapsed into one class;
and each remaining emoji had its own class. In
the end, we had 13 classes after merging.

After running the model on these new set of
classes, the macro F1 score improved by 6 per-
cent points suggesting that the semantic similarity
between emojis, such as i and & , has an effect
although the effect was not nearly as significant
as we had expected. It is worth noting that after
collapsing the semantically similar classes, plenty
of tweets were misclassified as the most frequent
class. Thus, it may be that the semantic similar-
ity of the classes does really matter but the gain in
performance from collapsing the classes was off-
set by the fact that we had a class that was rela-
tively much larger than the largest class before.

The BOW performed relatively well for labels
0,1,2,4and 17 (¥, %= , &, & and & respectively)
for the English data.

2.2 Insights from BOW Spanish Results

The Spanish results were much worse than the En-
glish results. Table 5 illustrates the major trend we
noticed with the BOW model’s performance on
the Spanish data. Count is the number of tweets
that correctly belong to a class. %C is what per-

Label Emoji Description

0 v Red heart

1 i Smiley face with heart eyes
2 =] Face with tears of joy

4 4 Fire

5 = Smiling face with smiling eyes
6 = Smiling face with sunglasses
13 v Purple Heart

10 i Camera

17 & Christmas Tree

18 i Camera with Flash

Table 4: Some English Emojis

%C %% %% %% | Count
v | 62 - 14 0 1882
@ | 43 16 - 14 1338
e | 46 0 25 - 908
¢ | 15 32 24 0 641
S 9 14 32 17 647
» | 11 22 29 11 438
=| 63 5 17 4 331
= 7 12 30 20 332

24 13 19 27 283

Table 5: BOW Spanish results. %C refers to the per-
cent correctly labeled and % emoji refers to the percent
mislabeled as emoji.

centage of tweets were correctly labeled. %% ,
%% and %< are the percentages of tweets that
our model misclassified as labels 0, 1 and 2 re-
spectively. Thus for @ , there were 1882 tweets
in the test data; 62% of these were labeled cor-
rectly while 14% was incorrectly as ® . As the ta-
ble shows, a significant percentage of tweets were
either misclassified as ® , ® or & . The exception
to this is = - the Spanish flag. Table 6 shows the
emojis corresponding to the numerical labels.

2.3 Neural Network

Upon reading about how neural models achieved
high scores on similar tasks, we decided to try out
methods based on (Barbieri et al., 2017) and (dos
Santos and Gatti, 2014). The task this paper tries
to solve is based on Barbieri et al.’s work where
they do the same task. Their best performing
model was a character based Bi-directional Long

402

Label Emoji Description

0 v Red heart

1 @ Smiley with heart eyes

2 = Face with tears of joy

3 ¢ Two hearts

4 = Smiley with smiling eyes

5 Face blowing a kiss

9 = Spain

10 = Smiling face with sunglasses
16 Musical notes

Table 6: Some Spanish Emojis

Short-term Memory Network (char-BLSTM). We
also took inspiration from dos Santos and Gatti’s
work. They were able to achieve very good results
using a Convolutional Neural Network (CNN) to
do sentiment analysis. We tested four different
types of neural network models: LSTM, BLSTM,
CNN-LSTM and CNN-BLSTM. For the LSTM
based models, we used a network size of 128.
The only difference between our LSTM and our
BLSTM is that we added a layer to train each in-
put bidirectionally. Our CNN’s convolution layer
had an output dimension of 64 and a kernel size of
5. For it’s pooling layer we chose a pool size of
4. When training each of the neural network mod-
els we used a development set which was 10% of
the training set to select the best parameters and
to know how many epochs to train for. We settled
on these specific parameters after trying out dif-
ferent parameters on the development set. None
of our neural network models performed signifi-
cantly better than our baseline.

2.4 Linear SVM

Realizing that our neural network models did not
perform any better than our BOW baseline, we
decided to try a BOW model with other classi-
fiers which were not neural networks. We settled
on a Linear Support Vector Machine. To enable
multi-class classification we used a one-vs-rest ap-
proach.

2.5 Sampling

Roughly 20% of the tweets in the English data
belong to label 0. The performance of classifiers
such as Naive Bayes degrades when there is such a

English Spanish
Mean | S-Dev | Mean | S-Dev
Base 29.10 | 0.20 16.49 | 0.42
C+L 29.30 | 0.36 - -
C+L(f) | 29.35 | 0.44 - -
LSVM | 32.73 | 0.24 17.98 | 0.31

Table 7: Macro F1 scores. Base is baseline, L is LSTM,
C is CNN, (f) means each class was equally repre-
sented.

dominant class (Rennie et al., 2003). This data im-
balance exists in the Spanish data as well. To im-
prove the performance of our classifiers, we per-
form a sampling of the data so that we train on a
data set where the classes are roughly equally rep-
resented. We performed a simple under sampling
by randomly selecting an equal number of tweets
from each class even though a more sophisticated
re-sampling method will likely improve the results
(Estabrooks et al., 2004).

3 Results

The neural network models that we tested ended
up achieving around the same score as our BOW
baseline. The BOW model with a Linear Sup-
port Vector Machine for classification provided
the best results. Table 7 shows the results of the
LSVM along with the results of our baseline and
our best performing neural network models for
comparison. The effect of sampling the dataset to
balance the frequency of each class was negligi-
ble as shown in Table 7. The improvement to em-
ploying sampling was 0.05 percentage points for
our CNN combined with LSTM model. The F1
score of our LSVM model on the test data from
the task organizers was 31.834 which is within
one percent of the 32.73 from our 10-fold cross-
validation. Precision on the test data was 39.803,
recall was 31.365 and accuracy was 45.732. !

4 Discussion

The first important trend we observe with our sys-
tem (BOW model with LSVM classifier) is the
most frequently seen emojis ® , ® and & per-
form well in terms of true positives - ~83% for @
(8848/10622), ~57% for = (2903/5077) and ~63%
for @ (3171/5067) while at the same time being

'Task Scoreboard https://docs.google.com/sp
readsheets/d/1onl0j53EFcE4n-yO_sJclJEo6x
8hcUh5hsWTkTYdc_o/edit#gid=885431079. We
submitted under theteam name: Hopper.

403

false positives for many classes. Take @ (label 5)
for instance. 327 tweets are correctly classified as
belonging to @ . However, 732 tweets that should
have been classified as © are misclassified as = .
The trend of misclassifying more tweets as # was
seen for labels 6, 7, 8, 13, 14, 15, 16 and 19 as
well. This trend carried through from our base-
line; the final system performs better only because
of marginal improvements in the classification it-
self.

Below are some tweets for & that the LSVM
succeed in classifying that the Bernoulli Naive
Bayes could not find. We choose & because the
percentage difference in performance (in favor of
the LSVM) is the greatest here.

Different angles to the same goal. by
@user @ New

When iris.apfel speaks...knowledge and
wisdom is all you hear so listen up...
:@drummondphotog

Our supposition is that the Linear Support Vec-
tor Machine is able to make associations that the
Bernoulli Naive Bayes is unable to make. “An-
gles”, we suspect, correlates with camera than the
other emojis and the LSVM finds that associa-
tion. The second tweet is interesting because it
would seem that the LSVM is able to connect the
“photog” in “@drummondphotog” despite our use
of a Bag of Words Model unless the prediction
was based on some other less obvious word in the
tweet.

Acknowledgments

This project was carried out as a part of CS 8761,
Natural Language Processing, offered in Fall 2017
at the University of Minnesota, Duluth by Dr. Ted
Pedersen. We are grateful to Dr. Ted Pedersen for
his support and guidance in this project. Authors
are listed in alphabetical order.

References

Francesco Barbieri, Miguel Ballesteros, and Horacio
Saggion. 2017. Are emojis predictable? In Pro-
ceedings of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Volume 2, Short Papers, pages 105-111.
Association for Computational Linguistics.

Francesco Barbieri, Jose Camacho-Collados,
Francesco Ronzano, Luis Espinosa-Anke, Miguel

Ballesteros, Valerio Basile, Viviana Patti, and
Horacio Saggion. 2018. SemEval-2018 Task 2:
Multilingual Emoji Prediction. In Proceedings of
the 12th International Workshop on Semantic Eval-
uation (SemEval-2018), New Orleans, LA, United
States. Association for Computational Linguistics.

Steven Bird, Ewan Klein, and Edward Loper.
2009. Natural Language Processing with Python.
O’Reilly Media.

Andrew Estabrooks, Taeho Jo, and Nathalie Japkowicz.
2004. A multiple resampling method for learning
from imbalanced data sets. Computational Intelli-
gence, 20(1):18-36.

Christopher D. Manning, Prabhakar Raghavan, and
Hinrich Schuetze. 2008. Introduction to Information
Retrieval. Cambridge University Press. Pg. 268.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825-2830.

Jason D. M. Rennie, Lawrence Shih, Jaime Teevan, and
David R. Karger. 2003. Tackling the poor assump-
tions of naive bayes text classifiers. In In Proceed-
ings of the Twentieth International Conference on
Machine Learning, pages 616—-623.

Cicero dos Santos and Maira Gatti. 2014. Deep con-
volutional neural networks for sentiment analysis
of short texts. In Proceedings of COLING 2014,
the 25th International Conference on Computational
Linguistics: Technical Papers, pages 69-78, Dublin,
Ireland. Dublin City University and Association for
Computational Linguistics.

404

