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Abstract

This article describes our proposed Arabic
Sentiment Analysis system named ARB-
SEN. This system is designed for the In-
ternational Workshop on Semantic Eval-
uation 2018 (SemEval-2018), Taskl: Af-
fect in Tweets. ARB-SEN proposes two su-
pervised models to estimate the sentiment
intensity in Arabic tweets. Both mod-
els use a set of features including senti-
ment lexicon, negation, word embedding
and emotion symbols features. Our sys-
tem combines these features to assist the
sentiment analysis task. ARB-SEN sys-
tem achieves a correlation score of 0.720,
ranking 6th among all participants in the
valence intensity regression (V-reg) for the
Arabic sub-task organized within the Se-
mEval 2018 evaluation campaign.

1 Introduction and Related Work

According to Mohammad (2016) the Sentiment
Analysis (SA) task is used to refer to the “fask of
automatically determining the valence or polarity
of a piece of text, whether it is positive, negative,
or neutral”.

Nowadays, social media platforms like Twit-
ter, Facebook, LinkedIn, and Quora are widely
used (Lenze, 2017). For instance, Ranginwala
and Towbin (2017) estimate that Twitter has 320
million active monthly users. These social me-
dia platforms allow people to communicate not
only the sentiment they are feeling (positive or
negative) but also the intensity of this sentiment.
For example, from the tweet of your friend, you
can estimate that: he is very happy (most posi-
tive), slightly angry (slightly negative), absolutely
sad (most negative) or neutral (Mohammad et al.,
2017).
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Automatically determining the sentiment inten-
sity is an important task in several application
fields, such as public health, intelligence gather-
ing, commerce and social welfare (Mohammad
and Bravo-Marquez, 2017).

In the Semantic Evaluation (SemEval), senti-
ment analysis in Twitter task has been proposed
for the first time in SemEval-2013 by (Nakov et
al., 2013). Since SemEval-2013, this task has be-
come a principal task in SemEval : SemEval-2014
(Rosenthal et al., 2014), SemEval-2015 (Rosenthal
et al., 2015), SemEval-2016, (Nakov et al., 2016)
and SemEval-2017 (Rosenthal et al., 2017).

In the Arab world, Salem (2017) estimates that
the number of monthly active Arabic users was
11.1 million in March 2017, which makes Ara-
bic an emergent language for sentiment analysis
in Twitter (Rosenthal et al., 2017). Sentiment
analysis task in Arabic is particularly a challeng-
ing research task (Rosenthal et al., 2017) due to
its complex morphological and syntactic structure
(Habash, 2010).

Many Arabic sentiment analysis tools and stud-
ies have been proposed in order to overcome this
challenge. For example in Arabic newswire, the
most relevant works are: (Abdul-Mageed et al.,
2011), (Elarnaoty et al., 2012). In Arabic reviews
we find (Elhawary and Elfeky, 2010), (Elnagar,
2016), (Altowayan and Elnagar, 2017). In Arabic
Twitter many researches are focused on the senti-
ment analysis task such as (Mourad and Darwish,
2013), (Abdul-Mageed et al., 2014), (Refaee and
Rieser, 2014), , (Salameh et al., 2015) and (Al-
dayel and Azmi, 2016).

In this article we present our ARB-SEN system
devoted to enhancing the detection of sentiment
intensity in Arabic tweets. ARB-SEN system pro-
poses two methods to measure this valence. Our
best submitted method achieves a correlation of
0.720, ranking 6th in the Arabic Detecting Sen-
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timent Intensity shared task (Mohammad et al.,
2018a), SemEval-2018.

2 System Description

The sentiment intensity detection in ARB-SEN
system relies on a set of features. In what follows
we describe the considered features:

2.1

We employed the following four sentiment lexi-
cons to extract the SLF features:

Sentiment Lexicon Features (SLF)

Arabic Sentiment (Valence) Lexicons

Created as part of SemEval-2016 by Kiritchenko
et al. (2016), this Arabic sentiment lexicon is a list
of 1,168 single words and 198 simple phrases and
their associations with positive and negative sen-
timent. The lexicon include both standard and di-
alectal Arabic terms.

Arabic Sentiment (Valence) Lexicons

This is a annotated Arabic sentiment lexicon that is
created by (Saif M. Mohammad and Kiritchenko,
2016). These lexicons were created by measuring
the extent to which the words in a tweets corpus
co-occurred with a set of seed positive and seed
negative terms. This lexicon includes about 43k
entries (23k positive and 20k negative).

ArabSenti sentiment lexicon

ArabSent is a manually annotated Arabic senti-
ment lexicon of 14k words that was created and by
Abdul-Mageed et al. (2011). Each word in Arab-
Senti is associated with a positive/negative senti-
ment label.

Dialectal sentiment lexicon

This is a freely available Arabic sentiment lexi-
con with more than 480 dialectal Arabic words.
The lexicon is proposed by Refaee and Rieser
(2014) and it is manually annotated by native Ara-
bic speakers. Using these sentiment lexicons, we
extract for each tweet four features:

1) Sum Score The sum of sentiment scores
of all the words in the tweet.

2) Average Score This feature computes the
average of sentiment scores of all the words
in the tweet.

3,4) Min and Max Score Represent the mini-
mum and maximum sentiment score of words
in the tweet.
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For each of these features, if one word in the tweet
does not exist in a sentiment lexicon, its corre-
sponding sentiment score is not considered.

2.2 Negation Feature (NF)

Negation refers to words that reverse the senti-
ment of the word/phrase coming after them. For
example: A owd UV (I'm not happy), in this

example the word a=. (happy) has a positive

sentiment, however, due to the negation word
o ('m not) the sentiment of expression be-

comes negative. This feature is used by ENCU
system (Wang et al., 2016) the best system in
SemEval-2016 (Sentiment Intensity Task). Wang
et al. (2016) they showed that the sentiment of the
phrase can be reversed by adding a negation. Thus,
for this binary feature, we have used a list of five
main negation word in the Modern Standard Ara-
bic (MAS) { (] YL L, o ) proposed by
(Abdulla et al., 2013). If the tweet contains at least
one negation, this feature is set to 1, else 0.

2.3 Word Embedding Feature (WEF)

One of the main advantages of word embedding
model is the fact that it allows for the retrieval
of a list of words that are used in the same con-
texts with respect to a given word (Mikolov et al.,
2013). In fact , we use the Arabic CBOW model
(Zahran et al., 2015) to construct a list of 5-closet
words for each word in the tweet as described in
(Nagoudi et al., 2017). Then, we extract for each
tweet the same features described in the section
2.1, with the difference that we compute the senti-
ment score for each word based on their 5-closet
in word embedding:

1) Sum ScoreThe sum of the average sen-
timent scores of all the 5-closet words in
tweet.

2) Average Score This feature computes the
average of sentiment scores of the 5-closet
words in the tweet.

3,4) Min and Max Score Represent the min-
imum and maximum average sentiment score
of the 5-closet words in tweet.

To compute these features, we have used the same
sentiment lexicons presented in the section 2.1.

2.4 Emoticons and Emojis Features (EEF)

The emoticons and emojis are already used in the
sentiment analysis task in twitter (Read, 2005)



Positive

Emoticons \ Emojis
=) ) :D 0) =] @O
] 3 ) 8) -] POOO6
Negative
Emoticons \ Emojis
A :-C (¢ ©O0Re
-C :C [ H{ @00®
Neutral
Emoticons \ Emojis
J ol - ot ©@e0
=/ =1 L =L z O@O®OO
Table 1: A sample of the positive, negative and

neutral emoticons and emojis.

and (Wolny, 2016). Therefore, we have used the
Emoticons and Emojis as an indicator to predict
the sentiment intensity of the tweet. We have used
3 set of emoticon and emoji positive, negative and
neutral. Table 2 shows a sample of the positive,
negative and neutral of emoticons and emojis.

2.5 Models Construction

The previously described features are fed into two
different regression classifiers : Linear Regres-
sion (LR) and Support Vector Regression (SVR).
We have used the python-based machine learning
scikit-learn library' to trained these classifiers on
the training and development data set of SemEval
2018 (Mohammad et al., 2018b), along with the
previously discussed features to predict the senti-
ment intensity score for each tweet. Figure 1 illus-
trates an overview of the ARB-SEN system.

3 Experiments And Results
3.1 Training Data

The organisers of SemEval 2018 provided a train-
ing and development data set, which contained
933 and 139 Arabic tweets respectively. Thus, the
trial and development are used as training data for
our supervised models.

3.2 Data Pre-processing

In order normalize tweets, many pre-processing
techniques have been proposed in the literature,
such as:(Agarwal et al., 2011), (Ahmed et al.,

"http://scikit-learn.org
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Figure 1: Architecture of the ARB-SEN system.

2013), and (Rosenthal et al., 2014). Therefore,
we normalize our tweets using the following pre-
processing steps:

1.
2.

Removing @user_names, RTs, and URLs;

Removing diacritics and non-alphanumeric
characters;

. Tokenizing the #hashtags of each
tweet by breaking them into words, e.g:
#very_nice_day becomes very, nice and day;

. Normalizing the exchangeable Arabic letters
as described in (Darwish et al., 2012), e.g:

normalizing i | T to ! and replacing final

« followed by ¢ with %.

3.3 Tests and Results

To evaluate the performance of our system, our
two supervised models were assessed based on
their accuracy on the 731 tweets in the Arabic Sen-
timent Intensity Evaluation Set?>. In addition, we
studied the impact of sentiment lexicon, negation,
word embedding and emotion symbols features on
the prediction efficiency.

We calculate the Pearson correlation between
our assigned Sentiment Intensity scores and the
gold labels. The results are presented in Table 2.

These results demonstrate that SVR classifier
with all features succeed in predict the sentiment
intensity in Arabic tweets with a Pearson corre-
lation score of 0.720. However, the LR classifier
with all features achieves a correlation score of
0.617. Thus, we can easily observe that SVR clas-
sifier with all features outperforms the LR classi-

http://saifmohammad.com/WebDocs/
AIT-2018/AIT2018-DATA



Methods Features Correlation
SLF 0.523
LR SLF+NF 0.524
SLF+NF+WEF 0.561
SLF+NF+WEF+EEF 0.617
SLF 0.647
SVR SLF+NF 0.649
SLF+NF+WEF 0.683
SLF+NF+WEF+EEF 0.720
Baseline - -0.052

Table 2: Correlation results

fier with a gain of +11%. Regarding the impact
of the extracted features, all of them improve the
results of the sentiment intensity prediction. Inter-
estingly, we notice that the word embedding and
emotion symbols features play a key role in im-
proving the performance of the prediction accu-
racy in both classifiers with a mean of +3.5% and
+4.7% respectively.

4 Conclusion and Future Work

In this article, we have presented two supervised
models to predicate the sentiment intensity in Ara-
bic tweets. Both classifiers are trained along with
a set of Arabic tweets characterised by a set of
features including: sentiment lexicon, negation,
word embedding and emotion symbols features.
The performance of our proposed system was con-
firmed through the Pearson correlation between
our assigned sentiment scores and the golden la-
bels. As future work, we are going to extend our
features by using an Arabic Combined-Sentiment
Word Embedding model. We would also like to
further investigate the Arabic sentiment analysis
task with more recent classifiers, namely Neural
Deep learning.
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