Zewen at SemEval-2018 Task 1: An Ensemble Model for Affect Prediction
in Tweets

Zewen Chi, Heyan Huang, Jiangui Chen, Hao Wu, Ran Wei
School of Computer Science, Beijing Institute of Technology, Beijing, China
czwin32768@gmail.com, hhy63@bit.edu.cn,chenjianguiloutlook.com,
wuhaol23@bit.edu.cn,weiranbit@l63.com

Abstract

This paper presents a method for Affect in
Tweets, which is the task to automatically de-
termine the intensity of emotions and inten-
sity of sentiment of tweets. The term affect
refers to emotion-related categories such as
anger, fear, etc. Intensity of emotions need
to be quantified into a real valued score in [0,
1]. We propose an ensemble system including
four different deep learning methods which are
CNN, Bidirectional LSTM (BLSTM), LSTM-
CNN and a CNN-based Attention model (CA).
Our system gets an average Pearson correla-
tion score of 0.682 in the subtask El-reg and
an average Pearson correlation score of 0.784
in subtask V-reg, which ranks 19th among 48
systems in El-reg and 17th among 38 systems
in V-reg.

1 Introduction

Affect determination is a significant part of nature
language processing. Especially, affect in tweets
becomes a focus in recent years. Sentiment Anal-
ysis in Twitter, which is a task of SemEval, was
firstly proposed in 2013 and not replaced until
2018. In SemEval 2018, the task Affect in Tweets
(AIT) (Mohammad et al., 2018) was proposed and
the objective is to automatically determine the in-
tensity of emotions (E) and intensity of sentiment
(aka valence V) of tweets. In this paper, we focus
on two subtasks:

e El-reg (emotion intensity regression) — Given
a tweet and an emotion E, determine the in-
tensity of E that best represents the mental
state of the tweeter — a real-valued score be-
tween O (least E) and 1 (most E)

V-reg (sentiment intensity regression) —
Given a tweet, determine the intensity of sen-
timent or valence (V) that best represents the
mental state of the tweeter — a real-valued

313

score between 0 (most negative) and 1 (most
positive)

Before 2016, most systems use Support Vector
Machine (SVM), Naive Bayes, maximum entropy
and linear regression (Nakov et al., 2013; Rosen-
thal et al., 2014, 2015). In SemEval 2014, deep
learning methods started to appear and a team
using them won the second place. Since 2015,
more and more teams who were rank at the top
used deep learning methods and now deep learn-
ing methods including CNN and LSTM networks
become really popular (Nakov et al., 2016; Rosen-
thal et al., 2017).

The system described in this paper is an en-
semble of four different DNN methods including
CNN, Bidirectional LSTM (Bi-LSTM), LSTM-
CNN and a CNN-based Attention model (CA). In
these methods, words in tweets are firstly mapped
to word vectors. After intensity scores are calcu-
lated by these models, we use a logistic regression
and finally give the scores.

The rest of the paper is organized as follows.
Section 2 describes the four various methods and
the ensemble method used in our system. Section
3 and Section 4 give the implementation and train-
ing details of our system for subtask El-reg and
V-reg. Section 5 states the results and discussion
in the evaluation period. Finally, Section 6 makes
a conclusion on this work.

2 System Description

2.1 CNN

Inspired by Kim’s work on sentence classification
(Kim, 2014), the architecture of the CNN model
used in our system is almost identical to his model.
As it is shown in Figure 1, tweets are first fed into
the embedding layer, which converts words into
word vectors. Then the tweet is mapped into a ma-
trix M of size n x d. In order to reduce the number

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 313-318
New Orleans, Louisiana, June 5-6, 2018. ©2018 Association for Computational Linguistics

Max-over-time pooling

Convolutional layer with

Tweets of length n with filters of different widths

non-static channals

neuron

Figure 1: The architecture of our CNN model

of parameters in the neural network, we just use
the single channel non-static model, which sets
pre-trained word vectors in the embedding layer
and can be modified in the training period. In the
convolution layer, convolution operations are ap-
plied on the submatrixes of M. The convolution
operation here is defined as:
ek = fe(D2; Do) WijTpizivh—1) + b)

where b € R is a bias term and f is a non-
linear function such as ReLLU (Jarrett et al., 2009),
which is used in our approach. Filters are applied
with different size of windows and in each win-
dow of size h, feature matrix ¢ € R("~h+Dxm jg
produced corresponding to the filters:

Cc = [Cl, C2yeeey Choy euny Cm]

where m is the number of filters and ¢, €
R™~h+1 represents the features extracted from a
word sequence. In the pooling layer, we apply a
max-over-time pooling operation (Collobert et al.,
2011) over feature matrix and take the maximum
in each column to preserve the most important fea-
tures. These maximums are concatenated and then
fed into a fully-connected network (L1, L2). L2
is followed by a single sigmoid neuron node to
generate the prediction of the affect on the inter-
val [0, 1].

2.2 Bidirectional LSTM

The LSTM architecture used in our system is
a kind of modern Recurrent Neural Networks
(RNN). Comparing to CNN, the way RNN work is
more similar to that how humans read sentences.
A word vector sequence x, which is converted
from a tweet, will be fed to the RNN in order.
h = oc(Whext + Whnhi—1 + bp)
y' = softmaz(Wyphe + by)
At time ¢, the RNN takes the input from the cur-

Fully connected layers
with sigmoid output

314

Xt

|

LSTM (Forward)

Xp—1%n

}

—x
—

s
Fully connected
layers

L STM (Backward)

f

Xt

=
(i

Xp Xp—1

Figure 2: The architecture of our bidirectional LSTM
model, where hyn and hyn represent the last hidden
state of the forward and backward LSTM respectively.

rent word z; and also from the previous hidden
state h;_1 to calculate the hidden state h; and the
output ¢, which means ¢, at time t is in the in-
fluence of all previous input words 1, ..., T¢—1.
However, this regular RNN suffers from the ex-
ploding and vanishing gradient problem when us-
ing the backpropagation algorithm (Hochreiter,
1998), which makes RNN hard to train. Therefore,
we use the Long short-term memory (LSTM) net-
work (Hochreiter and Schmidhuber, 1997) to over-
come this problem. Each ordinary node of hidden
layer in LSTMs is replaced by a memory cell and
the following equations describe the LSTM:

gt = ¢(ngxt + Wghht—l + bg)

it = o(Wigze + Winhe—1 + b;)

ft = o(Wipexe + Wephi—1 + by)

0y = o(Wopzt + Wonhi—1 + bo)

St =gt Ot + 510 f
hy = ¢(st) © oy

The vector h; is the value of hidden layer of
LSTM at time t, g, is the input node, #; is the input
gate, f; is the forget gate, o; is the output gate and
s¢ is the internal state where © is pointwise mul-
tiplication. According to Zaremba and Sutskever
(2014), the function ¢ used here is the tanh func-
tion.

For every point in a given sequence, Graves et
al. (2005) shows that a bidirectional LSTM can
preserve more sequential information about all se-
quential points before and after it. As the Figure
2 shows, we concatenate the hidden states of two
separate LSTMs after they process the word se-
quence in opposite direction and get the concate-
nated state k' € R2™, which is fed to fully con-
nected layers and finally give the result with a sin-
gle sigmoid neuron node.

2.3 LSTM-CNN

The architecture of LSTM-CNN is a combination
of previous two model. Instead of feeding the out-

fully connected
layers

!

[

| o |
Voo WL
f1 f r1 ‘
X1 X x[xil ln

Qutput Value

Sentence

Figure 4: The architecture of CNN-based Attention
Model (CA)

put of LSTM to the fully connected layers, the out-
put of LSTM h; at each time ¢ are regarded as the
input of CNN and Figure 3 shows the architecture.

2.4 A CNN-based Attention Model (CA)

Since attention mechanism has achieved signifi-
cant improvements in many NLP tasks, including
machine translation (Bahdanau et al., 2014), cap-
tion generation (Xu et al., 2015) and text sum-
marization (Rush et al., 2015), it becomes an
integral part of compelling sequence modeling
and transduction models in various tasks. Mo-
tivated by Du’s work on sentence classification
(Du et al., 2017), the architecture of our CNN-
based attention model resembles his model. We
first use a CNN-based network to model the at-
tention signal in sentences. The convolution op-
eration here is same as that described in Sec-
tion 2.1. The attention signal of original text
is represented by the output of convolutional fil-
ter. In order to reduce the noise, multiple filters
with same size of windows are applied. After
that, we get the corresponding attention similarity:

LSTM Units

315

T ow

‘ BLSTM

sigmoid
neuron

X

LSTM-CNN

CA

Figure 5: The architecture of the ensemble model

[c1, €2, ..., Cly ..y €]. Then we obtain the attention
signal of each element which represents the impor-
tance of the corresponding word by averaging the
attention similarities along the filter-axis:
c= Yty
An RNN with LSTM units is used to encode
the sentence. According to the equation in Section
2.2, the hidden state h; € R¢ (where d is the di-
mension of the RNN) at time ¢ is by = ¢(s¢) @ 0.
So far, we have obtained attention signal ¢; and
the corresponding hidden state vector of RNN A;.
The representation of the whole sentence can be
computed by
_ 1 T-1
S =7 24— Ctht
And then s € R? is fed into a fully-connected
network (L1, L2). L2 is followed by a single sig-
moid neuron node to generate the prediction of the
affect on the interval [0, 1]. The architecture of
this model is shown in Figure 4.

2.5 Ensemble Model

According to the results of SemEval-2017 task 4,
the use of ensembles stood out clearly. Therefore,
we use a mix of deep learning methods to make
our system obtain better predictive performance.
Inspired by the boosting algorithms, we use a lo-
gistic regression to improve the accuracy of these
four methods and the architecture is shown in Fig-
ure 5. In order to make the model simple, it only
takes the output of the four methods as input rather
than training data.

3 Implementation

We implemented our system with PyTorch (Paszke
etal., 2017) in Python 3.

Preprocessing: For making tweets string clean,
we apply a preprocessing procedure on the input
tweets which removes the abbreviations like ’s, 've
and make them lowercased.

Word Embeddings: We utilize pre-trained
300-dimensional word embeddings of Stanford’s

Methods L1 L2
CNN 300 150
BLSTM 30 Nil
LSTM-CNN | 256 100
CA 150 75

Table 1: Fully connected layers hyper-parameters, the
numbers represent the size of outputs of liner layers.

Methods p CNN LSTM
CNN 0.2 [2,3,4],256 Nil
BLSTM 0.5 Nil 300
LSTM-CNN | 0.5 [3], 200 300
CA 0.5 [3],50 150

Table 2: Network hyper-parameters for the filters of
CNN and hidden size of LSTM, and p is the dropout
rate. For example, [2, 3, 4], 256 means the filter height
is set to 2, 3 and 4, and the number of filters is set to
256 for different sizes of filters.

GloVe (Pennington et al., 2014) trained by Com-
mon Crawl.

Model Hyper-parameters: Table 1 and Table 2
show the hyper-parameters we use in our system.

For fully connected layers, no more than two
fully-connected layers are used in the four meth-
ods and all fully-connected layers are followed by
ReLU. Before the outputs of pooling layers and
LSTMs are fed to the fully connected layers, a
dropout is applied and the details are described in
Table 2.

4 Training

The dataset used in our system is provided by the
AIT task and no external datasets are used in train-
ing period. For the subtask El-reg and subtask V-
reg, they are trained with the same model hyper-
parameters which are listed in Table 1 and Table
2. Also, the four methods use the same word em-
beddings, which is a pre-trained 300-dimensional
word vectors with common crawl by GloVe algo-
rithm. For different emotions, we train the mod-
els for 10 epochs respectively. The network pa-
rameters are learned by minimizing the Mean Ab-
solute Error (MAE) between the gold labels and
predictions and the four methods used in our sys-
tem are trained separately. We optimize the loss
function by back-propagating algorithm via Mini-
batch Gradient descent with batch size of 8 for the
4 deep learning models and full batch learning for
the ensemble model, as well as the Adam opti-

316

mization algorithm (Kingma and Ba, 2014) for all
models with initial leaning rate of 0.001 and 0.01
for the four deep learning models and the ensem-
ble model, respectively.

5 Result and Discussion

We compare the results of the four methods
used in our system, the ensemble system, the
SVM _Unigrams_Baseline provided from the AIT
task and the best-performing system — SeerNet in
Table 3. The metric for evaluating performance is
Pearson Correlation.

Its remarkable that, comparing to the individual
models, our ensemble model has an improvement
of at least 2% on El-reg subtask and 1.1% on V-
reg subtask. However, it’s obvious that there is a
gap between our models and the best-performance
system. The rough preprocessing method of our
system is one of the reason for the low score. Be-
cause of some words in tweets are misspelled or
in a special format like ‘yaaaaay!’, some of the
information is lost in this process. So we added
an experiment on the V-reg task to study the ef-
fect of preprocessing method. We replace the text
preprocessing method with the ekphrasis' for the
tokenization, word normalization, word segmen-
tation (for splitting hashtags) and spell correction
and the keep the other parameters unchanged. As
it is shown in Table 4, the four methods as well
as the ensemble model all get an improvement on
the results. Actually, some expressions like dates,
urls, hashtags and emoticons are converted into the
special tokens like <date> , <url>, <hashtag>
and <joy>, but these tokens are not in the dictio-
nary of pre-trained word vectors, which means the
information of these tokens is still wasted in the
embedding process.

There is much room for the improvement of our
method:

1. In our system, a single pre-trained word em-
bedding is used, which lack experimental ev-
idence. For future work, combining more
kinds of word embeddings should be taken
into consideration.

We adjust the hyper-parameters by doing
evaluation on dev dataset. For future work,
we can apply a more advanced strategy like
Cross Validation.

'github.com/cbaziotis/ekphrasis

Methods Average(EI-reg) Anger Fear Joy Sadness V-reg

CNN 0.668 0.673 0.684 0.670 0.644 0.773

BLSTM 0.625 0.619 0.645 0.630 0.604 0.731

LSTM-CNN | 0.641 0.620 0.680 0.627 0.636 0.759

CA 0.640 0.606 0.662 0.670 0.624 0.761

Ensemble 0.682 0.673 0.700 0.690 0.665 0.784

SeerNet 0.799 0.827 0.779 0.792 0.798 0.873

Baseline 0.520 0.526 0.525 0.575 0453 0.585

Table 3: Results on Subtask El-reg and V-reg.

Methods Rough method | ekphrasis Christos Baziotis, Nikos Pelekis, and Christos Doulk-
CNN 0.773 0.788 eridis. 2017. Datastories at semeval-2017 task
BLSTM | 0731 £ Deep lom with enion for e e nd
LSTM-CNN | 0.759 0.767 the 11th International Workshop on Semantic Eval-
CA 0.761 0.773 uation (SemEval-2017), pages 747-754, Vancouver,
Ensemble 0.784 0.793 Canada. Association for Computational Linguistics.
)) Mathieu Cliche. 2017. Bb_twtr at semeval-2017 task
Table 4: Results of different text preprocessing 4: Twitter sentiment analysis with cnns and lstms.

method on V-reg task when the other parameters are
kept unchanged.

3. For the input features, we only use the word
vectors. We are supposed to experiment with
more features like lexicons.

. In our system, we just use a simple logistic
regression but achieve an impressive result on
the two subtasks. There is an interesting idea
that we can do more work on finding a better
ensemble model.

6 Conclusion

In this paper, we propose a model on the sub-task
El-reg and V-reg of SemEval-2018 Task 1: Af-
fect on Tweets. The submitted system is an en-
semble model based on CNN, Bidirectional LSTM
(BLSTM), LSTM-CNN and a CNN-based Atten-
tion model (CA). All methods are described in de-
tail to make our work replicable.

For future work, it would be significant to make
an improvement on preprocessing of tweets, doing
more experiment on word embeddings and feature
selection, model validation and ensemble method.

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

317

arXiv preprint arXiv:1704.06125.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research,
12(Aug):2493-2537.

Jiachen Du, Lin Gui, Ruifeng Xu, and Yulan He. 2017.
A convolutional attention model for text classifica-
tion. In National CCF Conference on Natural Lan-
guage Processing and Chinese Computing, pages
183-195. Springer.

Pranav Goel, Devang Kulshreshtha, Prayas Jain, and
Kaushal Kumar Shukla. 2017. Prayas at emoint
2017: An ensemble of deep neural architectures
for emotion intensity prediction in tweets. In Pro-
ceedings of the 8th Workshop on Computational Ap-
proaches to Subjectivity, Sentiment and Social Me-
dia Analysis, pages 58-65.

Alex Graves and Jiirgen Schmidhuber. 2005. Frame-
wise phoneme classification with bidirectional Istm
and other neural network architectures. Neural Net-
works, 18(5-6):602-610.

Hussam Hamdan. 2017. Sentil7 at semeval-2017
task 4: Ten convolutional neural network voters
for tweet polarity classification. arXiv preprint
arXiv:1705.02023.

Sepp Hochreiter. 1998. The vanishing gradient prob-
lem during learning recurrent neural nets and prob-
lem solutions. International Journal of Uncer-
tainty, Fuzziness and Knowledge-Based Systems,
6(02):107-116.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735-1780.

Kevin Jarrett, Koray Kavukcuoglu, Yann LeCun, et al.
2009. What is the best multi-stage architecture
for object recognition? In Computer Vision,
2009 IEEE 12th International Conference on, pages
2146-2153. IEEE.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Saif M. Mohammad, Felipe Bravo-Marquez, Mo-
hammad Salameh, and Svetlana Kiritchenko. 2018.
Semeval-2018 Task 1: Affect in tweets. In Proceed-
ings of International Workshop on Semantic Evalu-
ation (SemEval-2018), New Orleans, LA, USA.

Preslav Nakov, Zornitsa Kozareva, Alan Ritter, Sara
Rosenthal, and Veselin Stoyanov Theresa Wilson.
2013. Semeval-2013 task 2: Sentiment analysis in
twitter. volume 2.

Preslav Nakov, Alan Ritter, Sara Rosenthal, Fabrizio
Sebastiani, and Veselin Stoyanov. 2016. Semeval-
2016 task 4: Sentiment analysis in twitter. In Pro-
ceedings of the 10th International Workshop on Se-
mantic Evaluation (SemEval-2016), pages 1-18.

Adam Paszke, Sam Gross, Soumith Chintala, Gre-
gory Chanan, Edward Yang, Zachary DeVito, Zem-
ing Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in pytorch.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-

cessing (EMNLP), pages 1532—1543.

Sara Rosenthal, Noura Farra, and Preslav Nakov.
2017. Semeval-2017 task 4: Sentiment analysis in
twitter. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017),
pages 502-518.

Sara Rosenthal, Preslav Nakov, Svetlana Kiritchenko,
Saif Mohammad, Alan Ritter, and Veselin Stoyanov.
2015. Semeval-2015 task 10: Sentiment analysis
in twitter. In Proceedings of the 9th international
workshop on semantic evaluation (SemEval 2015),

pages 451-463.

Sara Rosenthal, Alan Ritter, Preslav Nakov, and
Veselin Stoyanov. 2014. Semeval-2014 task 9: Sen-
timent analysis in twitter. In Proceedings of the
8th International Workshop on Semantic Evaluation
(SemEval 2014), pages 73-80, Dublin, Ireland. As-
sociation for Computational Linguistics and Dublin
City University.

Mickael Rouvier. 2017. Lia at semeval-2017 task 4:
An ensemble of neural networks for sentiment clas-
sification. In Proceedings of the 11th International

318

Workshop on Semantic Evaluation (SemEval-2017),
pages 760-765.

Alexander M Rush, Sumit Chopra, and Jason We-
ston. 2015. A neural attention model for ab-

stractive sentence summarization. arXiv preprint
arXiv:1509.00685.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems, pages 3104-3112.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,
Aaron Courville, Ruslan Salakhudinov, Rich Zemel,
and Yoshua Bengio. 2015. Show, attend and tell:
Neural image caption generation with visual at-
tention. In International Conference on Machine
Learning, pages 2048-2057.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals.
2014. Recurrent neural network regularization.
arXiv preprint arXiv:1409.2329.

