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Abstract

This paper describes a system attended in the
SemEval-2018 Task 1 “Affect in tweets” that
predicts emotional intensities. We use Group
LSTM with an attention model and transfer
learning with sentiment classification data as a
source data (SemEval 2017 Task 4a). A trans-
fer model structure consists of a source domain
and a target domain. Additionally, we try a
new dropout that is applied to LSTMs in the
Group LSTM. Our system ranked 8th at the
subtask la (emotion intensity regression). We
also show various results with different archi-
tectures in the source, target and transfer mod-
els.

1 Introduction

Sentiment analysis is one of the most famous Nat-
ural Language Process (NLP) task. In this study,
we perform a task that predicts emotional inten-
sities of anger, joy, fear and sadness with tweet
messages, where intensity values range from 0 to
1. This task is competed at SemEval-2018 Task
1 (Mohammad et al., 2018). In previous stud-
ies, neural networks with word embedding and
affective lexicons were widely used (Goel et al.,
2017; He et al., 2017). Also, many studies em-
ployed support vector regression (Duppada and
Hiray, 2017; Akhtar et al., 2017).

Transfer learning was recently proposed as an
effecive approach to have higher performance,
when data is not abundant. Using a pre-trained
deep-learning model with an abundant data set has
been popular and shows good results in various
tasks (Donahue et al., 2014; Conneau et al., 2017).
Especially in a medical image task, it is very effi-
cient because of lacks of medical data (Tajbakhsh
et al., 2016). Just as humans can learn new things
better with their past knowledge, neural networks
can also be trained on target domains by transfer-
ring knowledge from the source domain.
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We make a transfer model that can be divided
into a source model and a target model. The
source model is constructed based on the paper
(Baziotis et al., 2017). The model of this paper
uses LSTM with attention. However, we introduce
Group LSTM (GLSTM) (Kuchaiev and Ginsburg,
2017) with a new dropout. After then, we make
the target model with LSTM.

In the result section, we provide comparison of
LSTM and GLSTM in the source model, and re-
sults of various pre-trained word embeddings with
target model. Finally, we discuss about the result
of the transfer model that is a combined model
with the source and target models.

2 System Description

2.1 Data and Label

For transfer learning, we use a source data pro-
vided by SemEval 2017 Task4 (a) (Rosenthal
et al., 2017). The task of the source domain is to
classify sentences to positive, negative and neu-
tral sentences. Training data is 44,613 sentences
(10% are used as a development set), and test data
is 12,284 sentences for the source model evalua-
tion. For transfer learning in this study, all training
and test data are used as training data.

For the target domain, training data is about
2,000 sentences for each emotion. Although the
main task is regression prediction, we change it as
distribution prediction (Tai et al., 2015). In this
way, we deal it as a classification problem. Inten-
sity scores y are changed to labels t satisfying:

y =) ifi=|y]+1
ti=q =y +1 ifi=|y]
0 otherwise

where i = [1,2,3,4,5] and y’ = 4y

Size of the final output is 5. For example, if an
intensity score y is 0.7, label t is [0, 0, 0.2, 0.8, 0].
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With given r = [0, 0.25, 0.5, 0.75, 1], label y can
be obtained again by dot product with t and r (0.7
=0.2*%0.5 + 0.8*0.75).

2.2 Text preprocessing

To normalize words and remove noise in sen-
tences, we use ekphrasis library (Baziotis et al.,
2017). It helps to apply social tokenizer, spell
correction, word segmentation and various prepro-
cessing. We normalize time and number, and omit
URL, email and user tag. Annotations are added
on hashtags, emphasized and repeated words. We
annotate them as a group because hashtags are
gathered in many cases (see Table 1). Lastly,
emoticons are changed to words that represent
emoticons.

#letsdance #dancinginthemoonlight #singing
= (hashtag) lets dance dancing in the
moonlight singing (/hashtag)

Table 1: Example of preprocessing hashtag

2.3 Word embedding

We try five pre-trained word embeddings to
choose the best one for the target model. Two are
trained with GloVe (Pennington et al., 2014) using
different data sets: one' is trained with very large
data in Common crawl, and the other? is made
with tweets (Baziotis et al., 2017). Other word
embedding methods are fastText’ (Bojanowski
etal., 2016), word2vec* (Mikolov et al., 2013) and
LexVec® (Salle et al., 2016). LexVec is the mixed
version of GloVe and word2vec. Dimensions of
them are all 300. Among them, GloVe with tweet
is used for the source and transfer models.

Emoji can be good features but most of emoji
ideograms are not contained in embedding vocab-
ulary. Hence, we change a emoji to a phrase with
python ‘emoji’ library. For example, % is de-
coded to “Smiling Face with Open Mouth and
Smiling Eyes”. Because it is quite long, embed-
ding vectors of emoji are changed to mean of vec-
tors of each decoded words. In this way, we reduce
Out-Of-Vocabulary and prevent the sentence from
lengthening.

Thttps://nlp.stanford.edu/projects/glove/

2https://github.com/cbaziotis/datastories-semeval2017-
task4

*https://github.com/facebookresearch/fastText
*https://code.google.com/archive/p/word2vec/
>https://github.com/alexandres/lexvec
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24 LSTM and GLSTM

Recurrent Neural Network (RNN) works well in
a sequence model like language by addressing its
arbitrary length (Tai et al., 2015). However, RNN
is difficult to be optimized because of a gradient
vanishing problem. To solve it, LSTM suggested
a cell state and gates as bridges to control the flow
of error (Hochreiter and Schmidhuber, 1997).

GLSTM is just a group of several LSTMs,
where outputs of LSTMs are concatenated. The
idea is that LSTM can be divided into several
sub-LSTMs (Kuchaiev and Ginsburg, 2017). This
model has some advantages compared to the orig-
inal LSTM. The number of parameters is reduced
with a preserving feature size. Also, it can be par-
allelized and computation times are reduced be-
cause the computation of each sub-LSTM is inde-
pendent.

2.5 Dropout

To avoid overfitting and achieve generality, we use
three types of dropout. One is normal dropout be-
tween layers (Srivastava et al., 2014). If a shape of
the layer is sequential, dropout mask is shared on
sequential axis. Another dropout is inside cells of
LSTM. In the each LSTM cell, the same dropout
mask is applied on hidden values that come from
the previous cell (Zaremba et al., 2014). Apply-
ing different dropout masks for each cell can mis-
lead memory and information. With the same
dropout mask, however, LSTM cell can dropout
nodes consistently so that the model can forget
or memorize information stably. The last one is
dropout between sub-LSTMs. To get more gener-
ality, we dropped several LSTMs in GLSTM. For
example, if GLSTM consist of five sub-LSTMs,
we dropped two LSTMs and only use the rest three
LSTM:s.

3 Model structure

3.1 Source model

For the source model, Glove with tweets is used
as input vectors of the embedding layer. After
embedding layer, two GLSTM layers are stacked.
GLSTM is made of 5 LSTMs with 40 feature size.
Additionally, we concatenate forward and back-
ward GLSTM to be bidirectional. So hidden size
of each recurrent layer is 400 (=5 x40 x 2).
Next is an attention layer, which calculates im-
portance of each time step. Attention mechanism
shows good performance on sequential tasks like
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Figure 1: Structure of models. For the trans-
fer model, connections between source and target
models are used. Large arrows are paths of re-
duced gradient flow during backpropagation.

Embedding

machine translation (Bahdanau et al., 2014) and
sentiment analysis (Baziotis et al., 2017). It helps
to concentrate position related to emotion. Atten-
tion values are calculated:

er = Wrhy + by
exp(et)
ar =1
Sheap(e;) >

Calculated attention values are multiplied by each
current hidden state and they are all added up.

Passing through the attention layer, the output
becomes non-sequential representation vectors. It
enters a fully connected softmax layer as a final
classification layer, where the size of the layer is
3.

ay —

3.2 Target model

Unlike the source model, a normal bi-LSTM is
used with 100 feature size. After then, attention
and output layers are stacked. The size of output
layer is 5.

For transfer learning, outputs of several layers
on the source model are used as additional fea-
tures. The LSTM layer on the target model takes
as input the concatenation of the embedding layer
and the first LSTM layer output of the source
model. After the attention layer, in a similar way,
outputs of the attention and the final layers on the
source model are concatenated and entered into
the final layer as input.
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3.3 Regularization

At the embedding layer, Gaussian noise is ap-
plied with sigma = 0.2. It helps models to be
robust by avoiding overfitting on specific features
of words. Dropouts are used everywhere between
layers with probability p = 0.3 except before the fi-
nal layer. Before the final layer, p = 0.5 dropout is
applied. Additionally, LSTM dropout was applied
on every LSTM layers with p = 0.3. The proba-
bility of dropout at GLSTM on the source model
is 0.3. Also, we use L2 normalization. It pre-
vents weights to be large values by adding weight
penalty to loss. We set up it with 0.001 for the
source model and 0.0001 for the target model.

3.4 Training

For the source and target models, categorical
cross-entropy is used as a loss function. For up-
dating weights, we apply the Adam (Kingma and
Ba, 2014) optimizer with a learning rate of 0.001.
During training the transfer model, since we want
to preserve target model weight parameters with a
little updating, we decrease gradient flow of back-
propagation from the source model to the target
model by 0.05 times (see large arrows on Figure
1). Because there are many parameters on the fi-
nal model, we take that constraint to prevent over-
fitting.

4 Result and discussion

41 GLSTM

Figure 2 shows the result of GLSTM and normal
LSTM on the source model for Sentiment Classi-
fication (SemEval 2017 Task 1a). We tried var-
ious feature sizes. The number of sub-LSTM in
GLSTM is fixed to 5 and the feature size of each
sub-LSTM is changed. As the sizes of features
increase, the performances of GLSTM increase.
On the other hand, although the performances of
LSTM gradually improve with larger feature sizes,
it starts to decrease rapidly after 100. Thus, we
infer that GLSTM with dropout is more effective
on overfitting than LSTM with larger feature size.
Based on this result, we use GLSTM for the source
model.

4.2 Various Embedding

We tested five different word embedding vectors
using the target model to choose the best em-
bedding. To compare the performances of em-
beddings, the embedding layers was not trained
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Figure 2: Performance comparison between
GLSTM and LSTM on the source model for sen-
timent classification. A dotted line is the result of
(Baziotis et al., 2017).

Embedding Avg Anger Fear Joy Sadness

Tweet

GloVe .690 730 670 | .675 .684
Common

GloVe .667 .690 624 656 698

Fast Text 639 | .667 | .586 | .638 .665

Word2vec | .654 | .704 | 599 | .631 681

Lex vec 648 | .656 | .630 | .646 .659

Table 2: Pearsons correlation of Dev set on the tar-
get model for SemEval-2018 Task1(a).

(static). Note that we did not use transfer learning
in this experiment. Table 2 shows Pearson corre-
lation between the given emotion intensities and
predicted intensities by the models on the devel-
opment set. Tweet GloVe had the best score and
Common GloVe showed the second best score.
Hence, we decided to do transfer learning with
Tweet GloVe and Common GloVe.

4.3 Transfer

Our main task results are described in Table 3.
There are four models. Tweet Glove and Com-
mon GloVe were picked from the conclusion of
4.2, and we performed two approaches: training
the embedding layer or not (non-static or static)
(Kim, 2014). Tweet GloVe with static showed the
best performance as a single model and it is al-
most same to non-static. However, the non-static
method had a higher score than the static for Com-
mon GloVe embedding. In addition, the ensemble
model by averaging all single models showed bet-
ter performance than the single models. We also
found that compared to the scores without trans-
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fer learning on dev set (Table 2), there were sig-
nificant performance improvements when transfer
learning used in Table 3.

5 Conclusion

This paper described the system submitted to
SemEval-2018 Task 1: Affect in tweets and anal-
ysis of various models. Various embedding vec-
tors were tried and we chose Tweet GloVe with
static. The main method is LSTM with attention
and transfer learning that uses sentiment classifi-
cation as source domain. In future work, we will
perform transfer learning with labeled data sets
such as SNLI or SST data sets. Also, training tag-
ging or tree parsing can be used for transfer learn-
ing.
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