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Abstract

This paper describes the system we built as the
YNU-HPCC team in the SemEval-2018 com-
petition. As participants of Task 1, named Af-
fect in Tweets, we implemented the sentimen-
t system for all five subtasks in English and
Spanish. All subtasks involved predicting e-
motion or sentiment intensity (regression and
ordinal classification) and determining emo-
tions (multi-label classification). Our system
mainly applied the bidirectional long-short ter-
m memory (BiLSTM) model with an atten-
tion mechanism. We used BiLSTM in order
to extract word information from both direc-
tions. The attention mechanism was used to
find the contribution of each word to improv-
ing the scores. Furthermore, based on the
BiLSTM with an attention mechanism, a few
deep-learning algorithms were employed for
different subtasks. For regression and ordinal
classification tasks, we used domain adapta-
tion and ensemble learning methods to lever-
age the base model, while a single base model
was used for the multi-label task. Our system
achieved very competitive results on the offi-
cial leaderboard.

1 Introduction

Sentiment analysis is an area of natural language
processing (NLP), which aims to systematically i-
dentify and study affective state, and to quantify
subjective sentiment expressed in texts. Tweets
in Twitter always constitute a challenging task a-
mong NLP problems because of the colorful writ-
ing styles used.

In previous work on sentiment analysis tasks,
researchers usually used a variety of hand-crafted
features and sentiment lexicons to generate the so-
lution system by combining traditional method-
s such as naive Bayes, support vector machines
(SVMs) (Mohammad et al., 2013), and decision
trees (Blake, 2007). Recently, many ensemble
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learning models based on these traditional meth-
ods (Giorgis et al., 2016) have attracted the interest
of researcher and have shown good results. These
approaches require long-term studies to gather in-
formation from massive or unstructured dataset-
s, and often result in redundant or missing fea-
tures. In contrast, the novel deep learning method
(Socher et al., 2013) has immediately and shown
exceptionally good results in NLP.

In this paper, we primarily present a deep learn-
ing system for the SemEval-2018 shared Task 1:
Affect in Tweets. We employ the bidirectional
long short-term memory with an attention mech-
anism (BiLSTM 471) as a base model. For the re-
gression and ordinal classification tasks, we used
fine-tuning methods on the base model, combined
with multi-tasking and AdaBoost algorithm. We
use a simple BiLSTM with an attention mechanis-
m for the multi-label task. Our contributions are
as follows:

e We propose a base model combining the Bil-
STM with an attention mechanism for the
sentiment analysis problem.

Using the base model, a domain adaptation
method of fine-tuning combined with multi-
tasking is used for associated tasks.

An ensemble learning method using the Ad-
aBoost algorithm implemented on the base
model is of great use for performing the task
with unevenly distributed data.

The remainder of this paper is organized as fol-
lows. In Section 2, we describe an overview of our
system. The details of the model are presented in
Section 3. Finally, comparative results of the ex-
periments are discussed, and a conclusion is drawn
in Sections 4 and 5, respectively.
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Figure 1: Architecture of the BILSTM with Attention Mechanism.

2 Overview

This section shows an overview of our system or
experiments, which consists of three steps:(1) the
data processing step, in which we use some tex-
t processing tools for preparing the data as input
to the deep learning models, (2) the training step,
where we build and train our models, and then pre-
dict and (3) evaluate our test results.

Task description. In all five subtasks, we take
participant in all subtasks for English and Span-
ish (Mohammad et al., 2018). Subtasks El-reg
and V-reg, which require the system to detect e-
motion and sentiment intensity (a real-value score
between 0 and 1) from given tweets, are both treat-
ed as regression problems. The difference between
them is that subtask El-reg has four different emo-
tion sub-datasets (anger, fear, joy and sadness). In
subtasks El-oc and V-oc, we are given the mes-
sage and scores, which are ordinal values from
four-level and seven-level scales corresponding to
positive or negative emotion and sentiment inten-
sity, respectively. Subtask E-c is a multi-label task
that requires the system to identify the tweets as
’no emotion” or as one, or more, of eleven given
emotions.

2.1 Data processing

We built our text processing tools in order to uti-
lize more information from the original text. The
objectives of the tools are word-splitting, word an-
notation, processing of unknown word, and so on.

Text pre-processing. It is difficult to feed original
tweets directly into a deep learning model. Im-
ported from the NLTK API !, the twitter-tokenizer
shows great usefulness in fast word segmentation.
The tokenizer is able to identify all the words,

"http://www.nltk.org/.
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most of the emoticons and emojis, and omits al-
I useless punctuation. The English (or Spanish)
dataset primarily contains English (or Spanish)
text. Therefore, all non-English (or non-Spanish)
letters are treated as unknown words. Moreover,
we converted all words to lower case and nor-
malized the construction of user (@user), URLs
(http://ie.com), and numbers and hashtags (#hash-

tag).

Pre-trained word embedding. Word embedding
techniques aim to use continuous low-dimension
vectors representing the features of the words
(Mikolov et al., 2013), captured in context. For
English tasks, a pre-trained word vector with a di-
mension of 300, which combined word embedding
from training with the GloVe algorithm (Penning-
ton et al., 2014) with the emoji embedding (Bar-
bieri et al., 2016), which included most of the e-
moticons and emojis, was used to map the tweet-
s. For the Spanish task, we used only the word
embedding training by Barbieri et al. (2016). Un-
known words were added to the vocabulary, and
their vectors were randomly generated from a u-
niform distribution of U(—0.25,0.25). The pre-
trained word embeddings were used for initializ-
ing the word embedding layer (the input layer) of
our deep learning models.

2.2 Deep Learning models

Recently, most advanced work in NLP employs
deep learning methods.

Convolutional Neural Networks (CNNs). Al-
though CNNs were first applied for computer vi-
sion, they also show great importance for NLP
problems (Zhang and Wallace, 2015). CNNs are
able to quickly extract local n-gram features, and
are easy to train. However, CNNs have difficulty



capturing long-distance dependencies.

Recurrent Neural Networks (RNNs). Another
effective neural network is the RNN, which cap-
tures dynamic information in serial data by pe-
riodically connecting hidden layer nodes. RNNs
can store a state of context or even a story, learn
and express relevant information in any long con-
text window, unlike CNN’s fixed-input formation.
An RNN is able to overcome the problem of long-
distance dependency. However, it is difficult to
train because gradients may explode or vanish
over long sequences (Hochreiter, 1998). One way
to address this problem is by employing a variant
of the regular RNN, the LSTM (Graves, 2012). L-
STMs have a more complex internal structure with
cells replacing RNN nodes, which allows LSTMs
to remember information for either a long or short
time.

Attention Mechanism. Between sequences, an
attention mechanism shows a considerable im-
provement by changing the contribution of each
word to the analysis of the whole text (Rocktschel
et al., 2015; Raffel and Ellis, 2015). Before the
RNN model summarizes the hidden states for the
output, an attention mechanism amplifies the re-
sults by aggregating the hidden states and weight-
ing their relative importance.

Domain Adaptation. Domain adaptation en-
hances learning in target domains by transferring
learning from source domains that may have a dis-
tribution different from the target domain. Domain
adaptation not only addresses the difference be-
tween source and target domains, but also pays
attention to the relevance of both domains. The
method provides an elegant way to access the ful-
I resources of similar tasks for target tasks (Mou
et al., 2016).

Ensemble Learning. Ensemble learning is a su-
pervised learning algorithm that ensembles two
or more weak learners to amplify system perfor-
mance (Maclin and Opitz, 1999). The AdaBoost
algorithm (Li et al., 2008) is one of the ensemble
learning algorithms that repeats training and ad-
justs the weights of all weak learners continuously
to take into consideration the previous iteration er-
ror prediction samples. Therefore, the AdaBoost
algorithm focuses more attention on a small pro-
portion of special samples in a dataset for better
scores.
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Figure 2: Architecture of cell in LSTM.

3 Model Description

We proposed the base BILSTM model with an at-
tention mechanism for subtask E-c (3.1). Two ad-
ditional models (3.2 and 3.3) based on the BiLST-
M with an attention mechanism are used for other
subtasks.

4 BiLSTM with Attention Mechanism
(BiLSTM 4 77)

Figure 1 shows the architecture of BiLSTM with
an attention mechanism, which has four different
layers as follows.

Embedding Layer. After the pre-processing of
text, tweets are transformed into a sequence of
words, X = (21,22,...,xx), X € RV*9 where
N is the number of a tweet, and d denotes the di-
mension of a word vector. The word tokens are
then directly fed into the model embedding layer,
which was initialized by the pre-trained word em-
beddings.

BiLSTM Layer. LSTM replaces the nodes of a
regular RNN model with special structures (cells).
The architecture of the LSTM is shown in Figure
2. It calculates the hidden state h; at time ¢ using
the following equations:

o Gates

fe=0W;y - [hy—1,2¢] + by)
ir = o(Wi - [he—1, 2] + b;) (D
or =0 (Wy - [he—1, 4] + bo)

e Transformation

Cy = tanh(We - [he—1, 2] + be)  (2)
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Figure 3: The Model of EIM. Here anger sub-dataset is
the target domain and other three sub-datasets regarded
as source domain.

e State update

Ci=fixCi1+igx Cy 3)

hy = oy * tanh(C})
where o denotes the sigmoid function, x; is the ¢-
th word vector, Cy, fi, iy and o, are all gate vectors
of the cell, and W and b are cell parameters.

We use bidirectional LSTM so as to obtain word
features H = (hy, ho, ..., h,) concatenated from
both directions. A forward LSTM processes the
tweet from x; to z,,, while a backward LSTM pro-
cesses from x,, to x1. For word z;, a forward L-
STM obtains a word feature as h and a backward
LSTM obtains the feature as % Then, h is calcu-
lated as follows:

hi = hy & hy, h; € R*E )

Where @ denotes the function of concatenation
and L is the size of the one-directional LSTM.

Attention Layer. We add an attention layer for
finding the contribution of each word to the w-
hole sequence. The attention mechanism assigns
a weight w; to each word feature h; with a focus
on results. The hidden states are finally calculated
to produce a hidden sentence feature vector r by a
weighted sum function. Formally:

e; = tanh(Wxh; + by), e; € [—1,1]

w; = =22l % w; =1
Zt:l exp(er)’ (=1 )
N
r= 3 wihir € R?L
i=1

where W}, and by, are the weight and bias from the
attention layer.
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Figure 4: The Model of SIM

Output Layer. The representation 7 is a sentence
feature vector, which we put into a fully-connected
layer that outputs the results for the whole sen-
tence. Different tasks require different forms of
the output. This base model is dedicated to sub-
task E-c, with eleven fully-connected sigmoid lay-
ers as the output layer.

4.1 Emotion Intensity Model (EIM)

Figure 3 shows an overview of the EIM, the model
we used for task El-reg and El-oc with more than
one sub-dataset. To train one emotion dataset as
a target task (7), the other three emotion dataset-
s were treated as source tasks (5). Our approach
was to first train the base model on S, and then
to directly initialize the base model on 7' using
the tuned parameters. The parameters were then
fine-tuned for predicting the results of S. The out-
put layer of the EIM uses the linear decoder for
regression. For ordinal classification task El-oc,
real-value scores from the EIM are translated into
four-point classes with thresholds according to the
training sets for El-reg and El-oc.

4.2 Sentiment Intensity Model (SIM)

Figure 4 shows the architecture of the SIM. Based
on the base model, we use the AdaBoost algorith-
m ensemble the M weak learners to a stronger
learner for subtask V-reg and V-oc. Initially, each
sample has the same weight. After each iteration,
the algorithm weights the samples with poor pre-
dictions by the previous learner, and the weighted
samples are again used to train the next learner.
Finally, we use the calculated weight a; of each



subtask El-reg subtask V-reg
Model P

anger | fear joy sadness p
CNN 0.428 | 0.498 | 0.501 | 0.631 0.700
LSTM 0.551 | 0.522 | 0.560 | 0.500 0.762
CNN-LSTM | 0.521 | 0.532 | 0.592 | 0.555 0.753
BiLSTM 0.511 | 0.533 | 0.535 | 0.5003 0.718
BiLSTM a7 | 0.555 | 0.655 | 0.605 | 0.700 0.773
EIM 0.654 | 0.715 | 0.630 | 0.728 -
SIM 0.558 | 0.659 | 0.621 | 0.713 0.787

Table 1: Comparable results of experiments for subtask El-reg and V-reg.

learner for the weighted sum of scores. The out-
put layer of the SIM is the same as the one in the
task El-reg. The results of task V-oc are obtained
from the real-value scores of the SIM with thresh-
olds according to the training sets for V-reg and
V-oc.

4.3 Training and Hyper-parameters

We train the model for task E-c using the categori-
cal cross-entropy loss function, and for other tasks
using mean squared error. For all tasks, we use the
Adam (Kingma and Ba, 2014) optimizer to train
models, and the Relu activation function for fast
calculation. An early stopping (Prechelt, 1998) s-
trategy is used to prevent over-fitting. All models
use stochastic gradient descent with mini-batches
of size 32.

Hyper-parameters. The dimension of word em-
beddings (d) is 300; the number of each LSTM
(L) is 100; the dropout ratio is 0.25 at all layers
for all models. Finally, we set 30 learners from the
base model to train the SIM by ensemble learning.

5 Experiment

Corpus. The datasets we used were all provided
by the competition, with no other external corpus.
Except for subtasks El-reg and El-oc, which had
four sub-datasets, subtasks had only one dataset
each for English and Spanish. We thank Moham-
mad and Kiritchenko (Mohammad et al., 2013) for
contributions to the data.

Evaluation Measure. For regression and ordinal
tasks (including task El-reg, El-oc, V-reg, and V-
oc), the official competition metric was the value
(p) of the Pearson Correction Coefficient. More-
over, tasks El-oc and V-oc have a second metric,
the quadratic weighted kappa (k). For the multi-
label task (task E-c), apart from the official com-
petition metric (multi-label accuracy, a), a micro-
averaged F-score (f1™"°) and a macro-averaged

F-score (f1™"°) were also calculated for our
submissions.

Results. On the competition leaderboard, our
system placed 22/48 (9/24) for English (Spanish)
in task El-reg, 12/39 (8/16) in task El-oc, 27/38
(7/14) in task V-reg, 14/31 (6/14) in task V-oc and
7/35 (6/14) in task E-c.

Experiments and Analysis. We trained our mod-
els on the training set and evaluated the predic-
tion with the golden scores of the developmen-
t set. In order to illustrate the good performance
of our methods, we compare the results with base-
line models of CNN, LSTM, CNN-LSTM (Zhang
et al., 2017) and a regular BiLSTM. From the re-
sults shown in Table 1, we can see that our ap-
proach achieved a significant result. A regular L-
STM tends to ignore future contextual information
while processing sequences in a time series. The
BiLSTM is able to use both past and future con-
texts by processing the text from both directions.
Not all words make the same contribution to senti-
ment analysis in the text. The attention mechanism
is able to shuffle the word annotation weights ac-
cording to their importance to the meaning of sen-
tence. We can see that the attention based BiLST-
M obtained higher scores than the BILSTM with-
out the attention mechanism. Moreover, the SIM
and the EIM showed their best performance on
subtasks V-reg and El-reg, respectively. SIM em-
ployed the AdaBoost algorithm so as to integrate
30 the models of BILSTM 4p7. The SIM was able
to adapt to the training error rate of each learner,
so that the whole system was improved effectively.
The EIM fine-tuned the parameters for the multi-
task approach, which made full use of associated
sub-datasets of the task El-reg. Before training the
target dataset, the special parameter initialization
gave the target model additional knowledge from
the other source datasets. In addition, for the same
training tweets that were used in task El-reg (or
V-reg) and El-oc (or V-oc), we defined the thresh-
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old for translating from real-value score to ordinal
classes by referring to the training labels across the
training dataset.

6 Conclusion

In this paper, we described our deep learning mod-
els for the sentiment analysis task SemEval-2018
shared Task 1: Affect in Tweets. We used the BiL-
STM with an attention mechanism as a base model
and built the SIM and EIM for all subtasks. The
final system for submission achieved good result-
s. We would like to further explore text sentiment
analysis, and employ more interesting methods for
NLP problems.
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