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Abstract

This paper describes our system that has been
submitted to SemEval-2018 Task 1: Affect in
Tweets (AIT) to solve five subtasks. We fo-
cus on modeling both sentence and word level
representations of emotion inside texts through
large distantly labeled corpora with emojis and
hashtags. We transfer the emotional knowl-
edge by exploiting neural network models as
feature extractors and use these representa-
tions for traditional machine learning mod-
els such as support vector regression (SVR)
and logistic regression to solve the competi-
tion tasks. Our system is placed among the
Top3 for all subtasks we participated.

1 Introduction

Finding a good representation of texts is very chal-
lenging since texts are sequences of words which
are represented in a discrete space of the vocabu-
lary. For this reason, many past works have inves-
tigated in finding the mapping of words (Mikolov
et al., 2013; Pennington et al., 2014) or sentences
(Kiros et al., 2015) to continuous spaces, so that
each text can be represented by a fixed-size, real-
valued N-dimensional vector. This vector repre-
sentation then can be applied to machine learning
models to solve problems like classification and
regression. A good representation should contain
essential information inside each text and be a use-
ful input for statistical models.

Emotions in texts further deepen the complexity
of modeling natural language since they not only
depend on the semantics of a language but also
are inherently subjective and ambiguous. Despite
the difficulty, accounting for emotion is important
in achieving true natural language understanding,
especially in areas involving human-computer in-
teractions such as dialogue systems (Fung, 2015).

Humans can naturally capture and express dif-
ferent emotions in texts, so machines should also

be able to infer them. Many works (Tang et al.,
2014; Felbo et al., 2017; Thelwall, 2017) explored
modeling sentiment or emotion in texts in various
directions. This work is highly related to these ef-
forts.

Semeval-2018 Task 1: Affect in Tweets (AIT-
2018) encourages more efforts in this area with
the task of sentiment analysis, which is one of
the most practical applications of modeling emo-
tional text representations. We have participated
in five subtasks regarding English tweets: emo-
tion intensity regression, emotion intensity ordi-
nal classification, valence (sentiment) regression,
valence ordinal classification, and emotion classi-
fication (More details on the tasks in Mohammad
et al. (2018)).

Although these five tasks take different for-
mats, the most important objective is finding a
good representation of the tweets regarding emo-
tions. However, the given competition training
datasets are too small to achieve our goal (Table
3). Therefore, we explore utilizing larger datasets
that are distantly supervised by emojis and hash-
tags to learn a robust representation and transfer
the knowledge of each dataset to the competition
datasets to solve the tasks. We aim to minimize the
use of lexicons and linguistic features by replacing
them with continuous vector representations.

2 Emoji sentence representations

Thanks to the endless stream of social media such
as Twitter and Facebook, researchers nowadays
are lucky enough to have access to almost an un-
limited number of texts generated every day. Nev-
ertheless, annotating these texts with explicit emo-
tion or sentiment human labels is very expensive
and difficult. For this reason, many works nat-
urally focused on finding direct or indirect evi-
dence of emotion inside each text, such as hash-
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Figure 1: 11 clusters of emojis used as categori-
cal labels and their distributions in the training set.
Because some emojis appear much less frequently
than others, we group the 34 emojis into 11 clus-
ters according to the distance on the correlation
matrix of the hierarchical clustering from Felbo
et al. (2017) and use them as categorical labels

tags and emoticons (Suttles and Ide, 2013; Wang
et al., 2012), and found them useful to distantly
label an emotion of each text. Furthermore, the
recent popular culture of using emojis (Wood and
Ruder, 2016) inside social media posts and mes-
sages provides us even richer evidence of different
emotions, and they have been proven to be very ef-
fective in learning rich representations for various
affect-related tasks (Felbo et al., 2017).

2.1 Methodology & Emoji Dataset

In this paper, we compare two models using two
different emoji dataset to transform the competi-
tion data into robust sentence representations.

First model is the pre-trained DeepMoji model
(Felbo et al., 2017), which is trained through emoji
predictions on a dataset of 1.2 billion tweets with
64 common emoji labels. We use the pretrained
deep learning network, which consists of Bidirec-
tional Long Short Term Memory (Bi-LSTM) with
attention, except the last softmax layer, as a feature
extractor of the original competition datasets. As
a result, each sample is transformed into a 2304-
dimensional vector from the model.

The second model is our proposed emoji clus-
ter model. We crawled 8.1 million tweets with
each of which has 34 different facial and hand
emojis, assuming these kinds of emojis are more
relevant to emotions. Since some emojis appear
much less frequently than others, we cluster the
34 emojis into 11 clusters (Figure 1) according to
the distance on the correlation matrix of the hier-
archical clustering from Felbo et al. (2017). Sam-

ples with emojis in the same cluster are assigned
the same categorical label for prediction. Sam-
ples with multiple emojis are duplicated in the
training set, whereas in the dev and test set we
only use samples with one emoji to avoid confu-
sion. We then train a one-layer Bi-LSTM clas-
sifier with 512 hidden units to predict the emoji
cluster of each sample. We take part of the dataset
to construct a balanced dev set with 15,000 sam-
ples per class (total 165,000) for hyperparameter
tuning and early stopping. We use 200 dimension
Glove vectors pre-trained on a much larger Twitter
corpus to initialize the embedding layer.

The motivation for exploring two different mod-
els is that, firstly, we want to replicate the effec-
tiveness of using emoji for representing emotions
from the previous work (Felbo et al., 2017) with a
smaller dataset and a simpler model. Note that the
dataset size of the emoji cluster model is less than
1% of that of the first model, whereas DeepMoji
uses more than 1 billion training samples. More-
over, the first model implements a two-layer Bi-
LSTM with self-attention, which has much more
parameters than the second model’s simple one-
layer Bi-LSTM does. Secondly, we want to verify
that ensembling both emoji representations trained
from different datasets to boost our performance.
We will present the result of the comparisons and
the ensembles in Section 5.2.

One thing i dislike is laggers man
I hate inconsistency
The paper is irritating me
As of right now i hate dre
im sick of crying im tired of trying
why body pain why
uuugh i really have nothing to do right now
i dont wanna go back to mex
looking forward to holiday
well today am on lake garda enjoying the life
perfect time to read book
im feeling great enjoying my holiday

Table 1: Test samples from the Emoji Cluster
model and their top-3 nearest sentences according
to the learned representations. It shows that emo-
tionally similar sentences are clustered together

2.2 Evaluation
As a result, the model can achieve 29.8% top-1
accuracy and 61.0% top-3 accuracy on the emoji
cluster prediction task. Since the objective of this
model is not to predict the cluster label but to
find a good sentence representation, we visual-
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ize the test set samples to discover that samples
with similar semantics and emotions are grouped
together (Table 1). Finally, similar to the first
model, we use this model as a feature extractor
on the competition datasets. Each text sample in
the competition datasets is transformed into a 512-
dimensional vector through the model except the
last class predicting softmax layer.

In conclusion, we trained two deep learning
models with two different emoji datasets to extract
emoji representations of the competition datasets.
They are transformed into high dimensional, real-
valued, and continuous vectors, which can be used
as features for the classification and regression
tasks.

From now on, we will call the vectors from the
first model, DeepMoji representations, and those
from the second, Emoji Cluster representations.

3 Emotional word vectors (EVEC)

We also explore word-level representations, along
with emoji sentence representations. Although
sentence-level representations already build up
from word representations (in particular we use
pretrained Glove vectors (Pennington et al.,
2014)), they may not be enough to attend to the
valence that each word contains. Previous works
(Tang et al., 2014) examine the significance of us-
ing sentiment-specific word embedding for related
tasks. For this reason, we train emotional word
vectors that not only cluster together direct emo-
tion words such as anger and joy, but also cap-
ture emotions inside indirect emotion words, such
as anger inside headache and joy inside beach.
We learn these vectors by training a Convolu-
tional Neural Network (CNN) from another sepa-
rate Twitter corpus distantly labeled with hashtags.

3.1 Methodology

Our intuition to learn effective emotion word vec-
tors is that given a document labeled with emo-
tion there exists one or more emotionally signifi-
cant words inside. Nevertheless, we do not know
which ones are more important. We assume that a
deep learning model, which learns the representa-
tions of the data with different level of abstractions
(LeCun et al., 2015) will be able to capture those
words and encode the information in its word em-
bedding layer while classifying the documents la-
bel.

For the model structure, we use CNN since it

is proven to be effective in text classification tasks
by looking at the documents n-gram features and
its gradient can be directly back-propagated to the
word embedding, whereas Recurrent Neural Net-
work (RNN) models are updated sequentially. We
use a similar structure used by (Kim, 2014), which
includes a max-pooling layer to force the network
to find the most relevant feature for predicting the
emotion class correctly.

After the CNN network learns how to classify
the documents into different emotion categories,
we extract emotional word vectors from the net-
work’s embedding layer and use them as same as
how other word embeddings, such as word2vec
(Mikolov et al., 2013) or Glove, are used, treating
them as features for other classification or regres-
sion models.

3.2 Hashtag Dataset

To accumulate a large corpus of emotion-labeled
texts, we use a distant supervision method by us-
ing hashtags of tweets to automatically annotate
emotions. Such method has proven to provide
relevant emotion labels by previous works (Wang
et al., 2012). Their source of the emotion words
came from emotion words list made from Shaver
et al. (1987), where the authors organize emotions
into a hierarchy in which the first layer contains
six basic emotions and each emotion has a list
of emotion words. Wang et al. (2012) again ex-
panded the list by including their lexical variants
and also introduced some filtering heuristics, such
as only using tweets with emotional hashtags at
the end of tweets to make the distant supervision
more relevant to human annotation. We combine
their dataset, another public dataset 1, which used
the same method, and our own extracted tweets
between January and October 2017 using the Twit-
ter Firehose API.

For the emotion labels, we focus on four emo-
tion categories: joy, sadness, anger, and fear, since
the competition tasks are only limited to those cat-
egories. In total, our hashtag dataset consists of
1.9 million tweets (Table 2).

3.3 Evaluation

For every sample in the SemEval competition
dataset, we extract all emotional word vectors of
the words in the sentence and simply average them

1http://hci.epfl.ch/sharing-emotion-lexicons-and-
data#emo-hash-data

266



Emotion Label % Samples
Joy 36.5% It’s been such a great week #happy
Sadness 33.8% I think I miss my boyfriend #lonely
Anger 23.5% Ignoring me isn’t going to make our problems go away. #annoyed
Fear 6% What to wear for this job orientation.. #nervous

Table 2: Description of the Twitter hashtag corpus. Hashtags at the end were removed from the document
and used as labels. It is hard to construct a well-balanced dataset for all four classes since Twitter users
tend to use more hashtags related to happy and sad emotions.

into one vector. For words out of vocabulary of the
hashtag corpus, we add zero vectors with the same
dimension. As a result, every sentence is trans-
formed into a 300-dimension vector to be used as
features for the competition tasks. We expect these
emotional word vectors can replace sentiment or
emotion lexicons, since they are continuous repre-
sentations learned from a large corpus, which can
be more robust and rich in information about emo-
tions inside words.

4 System Description

4.1 Features

These are the three features that are used as input
for our system to solve SemEval-2018 Task 1.

Emoji Sentence Representations: Two mod-
els will be compared - DeepMoji representations
(2304 dimensions) and Emoji cluster representa-
tions (512 dimensions). See Section 2.

Emotional Word Vectors (EVEC): Average of
emotional word vectors learned from hashtag cor-
pus (300 dimensions). See Section 3.

Tweet-specific features: We employ Tweet-
specific features to capture information that two
previous representations cannot. Inspired from the
previous SemEval papers (Zhou et al., 2016; Ba-
likas and Amini, 2016), we choose five features,
(1) number of words in uppercase, (2) number of
positive and negative emoticons, (3) Sum of emoji
valence score 2, (4) number of elongated words,
and (5) number of exclamation & question marks.
Note that we do not use any linguistic features or
sentiment/emotion lexicons for our system.

4.2 Preprocessing

Tweets in the competition datasets are tokenized
after all non-alphanumeric characters are re-
moved, except for extracting tweet-specific fea-
tures. Some words, especially for hashtags, are
merged together (e.g. #iloveyou), so unknown

2https://github.com/words/emoji-emotion

words in the vocabulary is put into a wordsegment
library 3 to preserve the right segment (e.g. i, love,
you). Then, the tokens are transformed into emoji
sentence representations (2304 or 512 dimensions)
and emotional word vectors (300 dimensions), ac-
cording to the vocabulary of the emoji and hashtag
dataset. These datasets respectively have 262,975
and 48,929 words in their vocabularies.

4.3 Regression and Ordinal Classification

Due to the fact that the datasets of regression tasks
(EI-reg & V-reg) and ordinal classification tasks
(EI-oc & V-oc) have the same sample sentences,
we assume that regression labels are more infor-
mative than the ordinals, since they tell us the rank
among the samples within the same ordinal class.
Therefore, we first train a regression model and
then use it to predict ordinals, rather than training
a separate classifier. We later prove that this trick
yields a better result in ordinal classification.

For regression, since our features are extracted
from deep learning models, we find Support Vec-
tor Regression (SVR) and Kernel-Ridge Regres-
sion methods, which are effective for nonlinear
features, perform better than linear methods. We
tune the hyper-parameters with the given develop-
ment (dev) set and later merge both train and dev
set to train the final model with the best hyper-
parameter found. Also, we try ensembles by aver-
aging the final regression predictions of different
methods or feature combinations to boost perfor-
mance. The best groups of models are selected by
the development set results of many combinations.

Another important finding is that the mapping
between the regression labels and ordinal labels
are very different among emotion categories. For
example in Figure 2, Class 0 for fear is distributed
in [0,0.6], whereas class 0 for joy is distributed in
[0, 0.4]. Therefore, we try to find the mapping
from the regression values (continuous) to ordinal

3http://www.grantjenks.com/docs/wordsegment/
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(a) Fear (b) Joy

Figure 2: Distribution of regression labels (x-axis) and ordinal labels (y-axis) on the training dataset of
Task 1a & 2a. Class 0 for fear is distributed in [0,0.6], whereas class 0 for joy is distributed in [0, 0.4].
Vertical lines are boundaries between ordinal classes, which are used for scope mapping method

values (discrete) from the training dataset. We ex-
periment with three different mapping:

1. naive mapping: divides [0,1] into same size
segments according to the number of ordinals

2. scope mapping: finds the boundary of each
segment in the training dataset (vertical lines
on Figure 2)

3. polynomial mapping: fits a polynomial re-
gression function from the training data and
finds the closest ordinal label.

4.4 Multi-label Classification
This task of multi-label classification is different
from previous tasks in that the model needs to pre-
dict the binary label for each of the 11 classes
given a tweet. The task is difficult in terms of three
aspects. Firstly, some of the classes have opposite
emotions (such as optimism and pessimism) but
may have been labeled both as true. Secondly, it
is not trivial to distinguish similar emotions such
as joy, love, and optimism, which will include a
lot of noise in the labels and make it hard to per-
form classification during training. Lastly, most
of the tweets are labeled with no more than 3 cat-
egories out of 11 classes, which make the labels
very sparse and imbalanced (Table 4 ).

We propose to train two models to tackle this
problem: regularized linear regression and logis-
tic regression classifier chain (Read et al., 2009).
Both models aim to exploit labels’ correlation to
perform multi-label classification.

4.4.1 Regularized linear regression model
We formulate the multi-label classification prob-
lem as a linear regression with label distance as

the regularization term. We denote the features for
i-th tweet as xi ∈ RN where N is the number of
features and the number of categories as C. Our
prediction is y

′
i = W ∗ xi where W ∈ RM∗C

is the weight of the linear regression model. We
take the following formula as loss function to min-
imize. The loss consists of two parts. First part
aims to minimize the mean square loss between
our prediction y

′
i and ground truth label yi. The

second part is the regularization term to capture
relationship among different emotion labels. To
model the correlations among emotions, we im-
plicitly treat each emotion category as a vertice in
an undirected graph g and use Laplacian matrix
of g for regularization (Grone et al., 1990; Shahid
et al., 2016) .

loss =
1

M

M∑

i

(y′ − y)2 + λy
′T
i Ly

′
i

L = D − A

where M is the number of samples, L ∈ RC∗C

is the Laplacian matrix, A ∈ RC∗C is the Eu-
clidean matrix, D ∈ RC∗C is the Degree matrix.
To derive L, we first compute the co-occurrence
matrix O ∈ RC∗C among the emotion labels and
take each row/column Oi ∈ RC as the represen-
tation of each emotion. Then we compute the dis-
tance matrix A by taking the Euclidean distance
of different labels. That is Aij = (Oi − Oj)

2.
Here, A can be regarded as the adjacency matrix
of the graph g. Afterwards, we calculate the de-
gree matrix D by summing up each row/column
and making it a diagonal matrix.

268



Subtasks 1a&2a 3a&4a 5a
Train 7,102 1,181 6,838
Dev 1,464 449 886
Test 4,068 937 3,259

Table 3: Statistics of the competition dataset for
all 5 subtasks

# of labels 0 1 2 3 4 5 6
% 2.9 14.3 40.6 30.9 9.6 1.4 0.2

Table 4: Number of multi-labels. Most samples
have from 1-3 labels, but can have no labels or up
to 6 labels. (subtask 5a)

4.4.2 Logistic regression classifier chain
Classifier chain is another method to capture the
correlation of emotion labels. It treats the multi-
label problem as a sequence of binary classifica-
tion problem while taking the prediction of the
previous classifier as extra input. For example,
when training the i-th emotion category, we take
both the features of input tweet and also the 1st,
2nd, · · · , (i-1)-th prediction as the input of our lo-
gistic regression classifier to predict the i-th emo-
tion label of input tweet. We further ensemble
10 logistic regression chains by shuffling the se-
quence of 11 emotion labels to achieve better gen-
eralization ability.

5 Experiments & Results

Most of our system experiments were imple-
mented by using PyTorch (Paszke et al., 2017) and
Scikit-learn (Pedregosa et al., 2011).

5.1 Competition dataset

SemEval-2018 Affect in Tweets (AIT) is cre-
ated by human annotators through crowd-sourcing
methods (Mohammad and Kiritchenko, 2018).
Total three datasets are given: emotion intensity
(with four emotion categories; Subtask 1a & 2a),
sentiment intensity (subtask 3a & 4a), and multi-
label emotion classification (subtask 5a).

For emotion and sentiment intensity datasets,
each tweet sample has both an ordinal label
(coarse; {0,1,2,3} for emotion, {-3,-2,-1,0,1,2,3}
for sentiment) and real-value regression label
(fine-grained; [0,1]). For multi-label emotion clas-
sification dataset, each can have none or up to six
number of multi-labels (Table 4).

We used the given development set to tune the
hyper-parameters and select models. For the fi-

nal submission, we merged the train & develop-
ment set together to retrain the model with the best
hyper-parameter found (Table 3).

5.2 Regression: Subtask 1a & 3a

Table 5 shows the test set results on regression
tasks, Subtask 1a&3a. We experimented with
different features that we introduced before to
analyze the effectiveness of each representation.
For emoji sentence representations, emoji cluster
worked better on sadness and sentiment, whereas
DeepMoji outperformed in anger, fear, and joy.
We presumed such difference was due to the dif-
ferent emoji types of the two datasets used to train
each model. Emoji cluster only used 11 classes of
emojis that were clustered together, but DeepMoji
used 64 emoji classes. It may be possible clus-
tering of emoji classes made it easy for regression
models to predict the intensities in certain emo-
tion categories, whereas some emotion categories
needed more detailed representations.

The emotional word vectors overall did help en-
hance the performance of the regression model for
all emotion categories. This shows that emotional
word vectors can serve as additional word-level in-
formation which are helpful for solving this task.

Tweet-specific features boosted the perfor-
mance, notably for sentiment, since features like
capital letters, emojis, elongated words, and the
number of exclamation marks, could help to figure
out the subtle difference of the emotion intensities.

One thing to note is that our system’s rank in the
fear category (7th) is relatively lower than other
emotion categories. We found out from the pre-
vious literature (Wood and Ruder, 2016) that fear
emojis were the most ambiguous, having the least
correlation with human-annotated emotion labels
among the six emotion categories. On the other
hand, joy emojis were the most highly correlated.
This may explain our best performance in the joy
category and worst performance in the fear cat-
egory. Future systems using emojis as a dataset
may need to take this shortcoming into account.

5.3 Ordinal Classification: Subtask 2a& 4a

As mentioned in Sec 4.3, we used our best regres-
sion model to also predict ordinal labels. Since
each emotion category has a different distribution
of regression labels and ordinal labels, we exper-
imented three different mappings, naive mapping,
scope mapping, and polynomial mapping. Using
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Features Regression Method
Pearson correlation (all instances)

1a (EI-reg) 3a(V-reg)
Anger Fear Joy Sadness Valence

Emoji Cluster SVR .733 .632 .679 .693 .811
Emoji Cluster KernelRidge .735 .638 .675 .692 .809
DeepMoji SVR .772 .675 .736 .664 .798
DeepMoji KernelRidge .778 .672 .737 .698 .798
Emoji Cluster + EVEC SVR .739 .678 .701 .706 .815
Emoji Cluster + EVEC KernelRidge .741 .694 .709 .709 .822
DeepMoji + EVEC SVR .781 .694 .749 .708 .810
DeepMoji + EVEC KernelRidge .779 .702 .754 .710 .813
DeepMoji + feat. SVR .785 .680 .739 .714 .824
DeepMoji + feat. KernelRidge .781 .670 .691 .711 .829
Emoji Cluster + EVEC + feat. SVR .757 .684 .720 .725 .844
Emoji Cluster + EVEC + feat. KernelRidge .757 .698 .693 .721 .840
DeepMoji + EVEC + feat. SVR .792 .709 .763 .732 .837
DeepMoji + EVEC + feat. KernelRidge .790 .716 .734 .739 .826
Best Ensemble .811(2) .728(7) .773(2) .753(5) .860(3)

Table 5: Test set results on Subtask 1a & 3a. For 1a, separate regression models were trained for each
emotion category. The number next to the best result(bold & underlined) indicates our ranking of the
competition. Underlined ones show the models that were selected for ensemble according to the dev set.

Pearson (all instances)
Task Naive Scope Poly

2a (EI-oc)

Anger .654 .664 .704(2)
Fear .498 .562 .570(*)
Joy .632 .720(1) .712

Sadness .645 .697(*) .692
4a (V-oc) Valence .813 .816 .833(2)

Table 6: Test set results on Subtask 2a & 4a.
The predictions of the best regression models are
mapped into ordinal predictions. The number next
to the best result(bold & underlined) indicates our
ranking of the competition. (*) indicates better re-
sults that we acquired after our final submission

the training set, we found the ideal mapping func-
tion to match the regression predictions and the or-
dinal predictions.

Test set results (Table 6) on ordinal classifica-
tion show that our mapping methods are indeed
much more effective. For anger, fear, and senti-
ment categories, polynomial mapping performed
the best, whereas scope mapping outperformed
for joy and sadness categories. With our method,
we achieved higher ranks in ordinal classification
tasks (2a & 4a), placed both in 2nd. Figure 3
shows how a cubic function is fitted to find the
mapping between regression labels and ordinal la-
bels.

Additionally, we report some results better than
the final submission. The change is due to a new
model selection strategy. For the final submis-
sion, we searched for the optimal pair of regres-
sion model & mapping method by looking at the

Figure 3: Plot of test labels and the mapping func-
tion derived from the training set. A polynomial
function is fitted to map the regression predictions
into ordinal predictions

ordinal classification results on the development
set. However, it turned out that always using the
best ensemble prediction and then searching for
the optimal mapping method with respect to the
development set was better.

5.4 Multi-label Classification: Subtask 5a

We found the best hyper-parameters by evaluating
on our development set. We initialized the weight
matrix W with a normal distribution of standard
deviation of 0.1. We used gradient descent to opti-
mize this function and set the learning rate to 1.0.
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Features CC RLR
Emoji Cluster .528 .545
DeepMoji .532 .552
Emoji Cluster + EVEC .545 .558
DeepMoji + EVEC .544 .558
Emoji Cluster + EVEC + f .546 .558
DeepMoji + EVEC + f .550 .562
Best ensemble .576(3)

Table 7: Test set results on Subtask 5a. The com-
petition metric is Jaccard index.

Gender Race
Ours Avg Ours Avg

Anger 0.5% 0.1% 1% 0.4%
Fear -0.9% -0.3% 3.3% 0.5%
Joy -1.2% 0.4% -0.9% -0.7%

Sadness 0% 0.2% 1.3% 0.8%
Valence -0.6% 0.5% -1% -0.6%

Table 8: Average differences of the system’s bias.
Gender difference is from female to male, and race
differences is from African American names to
European American names (sign of the percent-
age indicates the direction). “Ours“ indicate the
bias of our system, and “Avg“ is the average of the
biases of all systems from the competition.

The optimal λ we found was -0.0001.
We found that regularized linear regression

model was always better than classifier chain
model. The ensemble of classifier chain and regu-
larized linear regression of both features combina-
tion(underlined elements in Table 7) achieved best
performance than any single model (Table 7).

5.5 Analysis of system’s gender/racial biases

In this year’s competition, the organizers gave out
a mystery test set that was included in the regres-
sion tasks (subtask 1a & 3a). At the end of the
evaluation period, they announced that these were
set of pair sentences that differ only in the sub-
ject’s or object’s gender or racial names (See the
task paper Mohammad et al. (2018) for details). It
turned out that our system also included some bi-
ases like most other systems did, but fairly small,
less than 1.5% for gender bias and 3.5% for racial
bias (Table 8). We believe that this is an inter-
esting experiment and look forward to discussing
more about the issue during the workshop.

6 Conclusion

In this paper, we explored a couple of differ-
ent methods to find good representations of emo-

Subtask System Score(rank)

1a EI-reg

SeerNet .799(1)
NTUA-SLP .776(2)

PlusEmo2Vec .766(3)
psyML .765(4)

2a EI-oc
SeerNet .695(1)

PlusEmo2Vec .659(2)
psyML .653(3)

3a V-reg

SeerNet .873(1)
TCS Research .861(2)
PlusEmo2Vec .860(3)

NTUA-SLP .851(4)

4a V-oc
SeerNet .836(1)

PlusEmo2Vec .833(2)
Amobee .813(3)

5a E-c

NTUA-SLP .588(1)
TCS Research .582(2)
PlusEmo2Vec .576(3)

psyML .574(4)

Table 9: Official final scoreboard on all 5 subtasks
that we participated. Scores for Subtask 1-4 are
macro-average of the Pearson scores of 4 emotion
categories and 5 is Jaccard index. About 35 par-
ticipants are in each task.

tions inside tweets for solving 5 subtasks of pre-
dicting emotion/sentiment intensity and emotion
labels. We used external datasets, which were
much larger than the competition dataset but dis-
tantly labeled with emojis and #hashtags, to ex-
ploit the transferred knowledge to build a more
robust machine learning system to solve the task.
We avoided using traditional NLP features like lin-
guistic features and emotion/sentiment lexicons by
substituting them with continuous vector represen-
tations learned from huge corpora.

We performed experiments to show that emoji
sentence representations and emotional word vec-
tors trained from neural networks can be used
with tweet-specific features as input for other tra-
ditional regression models, such as SVR and Ker-
nel Regression, to solve the task of regression and
ordinal classification. We proved the effectiveness
of finding the mapping of the relationship between
regression and ordinal labels from the training set
to perform ordinal classification. Moreover, we
tried using classifier chain and regularized logistic
regression to deal with multi-label classification.

As a final official result (Table 9), our system
ranked among the top three in every subtask of the
competition we participated. For future work, we
want to work further on employing these emotion
representations on other tasks, such as text gener-
ation, while we gather more data and improve the
model to train the representations.
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