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Abstract

In this paper we describe our submission to
SemEval-2018 Task 1: Affects in Tweets. The
model which we present is an ensemble of var-
ious neural architectures and gradient boosted
trees, and employs three different types of vec-
torial tweet representations. Furthermore, our
system is language-independent and ranked
first in 5 out of the 12 subtasks in which we
participated, while achieving competitive re-
sults in the remaining ones. Comparatively re-
markable performance is observed on both the
Arabic and Spanish languages.

1 Introduction

The Affects in Tweets shared task (Mohammad
et al., 2018) is the second iteration of a task which
offers a new approach to Sentiment Analysis - one
that concerns itself with emotion and sentiment
intensity, rather than simple categorical classifi-
cation. The shared task is divided into a set of
subtasks, where the aim is to predict the emotion
intensity of a predetermined emotion (fear, anger,
sadness, joy) or sentiment (valence) intensity of a
given set of tweets. Such predictions are either for-
mulated as a regression problem where the output
is a continuous-valued score in the interval (0, 1),
or as ordinal classification into a given number of
classes representing intensity. Additionally, each
one of the subtasks targets a particular language:
English, Arabic or Spanish.

In total, we participated in 12 different subtasks
and our system achieved the best performance on
the test set out of all participants in 5 out of those,
ranked second in 3 others, and performed compet-
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itively in the rest. Moreover, our system can ar-
guably be considered the best overall performing
system for both Arabic and Spanish'. It should be
noted, however, that the shared task includes tradi-
tional emotion classification subtasks in which we
did not participate.

The system described in this paper builds upon
a survey of some of the best performing systems
from previous related shared tasks (Mohammad
and Bravo-Marquez, 2017; Rosenthal et al., 2017).
In particular, we draw inspiration from the systems
described in (John and Vechtomova, 2017), which
makes use of gradient boosted trees for regres-
sion; (Goel et al., 2017), which employs an ensem-
ble of various neural models; and (Baziotis et al.,
2017), which features Long Short Term Memory
(LSTM) networks with an attention mechanism.
Our work contributes to the aforementioned ap-
proaches by further developing a variety of neu-
ral architectures, using transfer learning via pre-
trained sentence encoders, testing methods of en-
sembling neural and non-neural models, and gaug-
ing the performance and stability of a regressor
across languages.

The rest of this paper describes the pipeline of
the system used for our submission, which is an
ensemble of neural and non-neural models.

2 Data and features

The provided training and development data is
comprised of tweets, an emotion or sentiment, and
labels describing the intensity of the emotion or

'nttps://competitions.codalab.org/
competitions/17751#results
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Figure 1: Graphical visualization of various feature vectors used in our ensemble model. These are from
left to right: character embedding, word embedding, In fer Rep and AvgLex Rep representations.

sentiment. We refer readers interested in an ex-
haustive description of the data to (Mohammad
et al., 2018; Mohammad and Kiritchenko, 2018).
In this work, we convert each tweet into a com-
bination of three types of vector representations:
character and word-level vectors for Arabic and
Spanish; and character, word, and sentence-level
vectors for English. This section describes the pro-
cedure that allows us to obtain these varied repre-
sentations, which are later employed by our clas-
sification and regression models.

2.1 Preprocessing

The syntactic and orthographic form of tweets of-
ten differs substantially from text belonging to
other domains (John and Vechtomova, 2017). As
such, pre-processing procedures are as important
as the architecture of any given model.

In pre-processing our data, we first replace all
same-character sequences of length 3 or more with
only 2 occurrences. We also replace all user men-
tions with a unique common token, as well as all
control characters with whitespaces. Emojis are
surrounded with spaces, enforcing that any two
emojis are not consecutive characters. Finally, all
text is lowercased. In the case of Spanish text,
we further remove the characters ; and ;, and re-
place accented characters with their unaccented
versions, as well as 77 with z. In the case of Arabic
text, we remove quotation marks as well.

Following the cleaning process, we tokenize the
resulting text by applying the twokenize tool
(Krieger and Ahn, 2010), as provided in the CMU
Tweet NLP software (Owoputi et al., 2013), which
is, by design, able to cope with the noise that ap-
pears in social media. Once the tokenization is
completed, we filter all stopwords 2.

2We employ the stopword lists available from https :
//www.ranks.nl/stopwords
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2.2 Lexicons

Lexicons are one of the resources which we em-
ploy in order to compute features. In short, a lex-
icon is a collection of words that are associated
with a value for an arbitrary number of affective
categories. In our case, given a tweet, we produce
several features per lexicon which are the result
of aggregating individual matching word values
in each category, adding the numerical values and
counting those which are nominal. We provide an
overview of the lexicons used per language below,
with the number of features contributed by each
individual lexicon in parenthesis. In the case of
English, the following lexicons and extracted val-
ues jointly produce a feature vector of dimension
43:

MPQA lexicon (2): Number of positive and
negative words (Wilson et al., 2005).

Bing Liu lexicon (2): Number of positive and
negative words (Hu and Liu, 2004).

Emoticons (2): Positive and negative aggre-
gated scores for emoticons (Nielsen, 2011).

Sentiment140 lexicon (2): Positive and neg-
ative aggregated scores (Kiritchenko et al.,
2014).

NRC Word-Emotion Association Lexicon
(10): Number of words matching each cat-
egory (Mohammad and Turney, 2013).

NRC Hashtag Sentiment lexicon (2): Positive
and negative aggregated scores (Kiritchenko
etal., 2014).

NRC Hashtag Emotion Association Lexicon
(8): Aggregated scores for each category
(Mohammad and Kiritchenko, 2015).



e NRC-10-Expanded lexicon (10): Aggregated
scores for each category (Bravo-Marquez
et al., 2016).

e SentiWordnet (2): Positive and negative ag-
gregated scores (Baccianella et al., 2010).

e AFINN lexicon (2): Positive and negative ag-
gregated scores (Nielsen, 2011).

e Negations (1): Number of negative words
(Mohammad and Bravo-Marquez, 2017).

In the case of Arabic we also employ the same
first 6 lexicons which we listed for English, but
with the content words automatically translated
(Salameh et al., 2015). However, we extract 4
scores from the MPQA lexicon (on the affective
categories positive, negative, neutral and both),
an a single combined score from the Bing Liu
and Emoticons lexicons. Furthermore, we employ
3 lexicons generated by distant supervision tech-
niques on Arabic tweets as follows (Mohammad
et al., 2016), in order to obtain a feature vector of
dimension 26:

e Arabic Emoticon Lexicon (2): Number of
positive and negative words.

e Arabic Hashtag Lexicon (2): Number of pos-
itive and negative words.

e Arabic dialectal Hashtag Lexicon (2): Num-
ber of positive and negative words.

Finally, the following lexicons are used in Span-
ish to produce a feature vector of dimension 14.
In contrast to the Arabic language, the majority of
the lexicons here listed are manually annotated or
semi-automatically generated from Spanish data:

e Emoticons (1): Combination of positive and
negative aggregated scores for emoticons
(Nielsen, 2011).

e El Huyar dictionary (2): Positive and nega-
tive aggregated scores (Saralegi and San Vi-
cente, 2013).

e ISOL lexicon (2): Number of positive
and negative words (Martinez-Cdmara et al.,
2014).

e SDAL lexicon (3): Aggregated scores for
each category (Dell’ Amerlina Rios and Gra-
vano, 2013).
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e Spanish Sentiment lexicon (2): Number of
positive and negative words (Perez Rosas
etal., 2012).

e ML Senticon (1): Aggregated score for po-
larity (Cruz et al., 2014).

e Sentwords (3): Aggregated score for each
category in an automatically translated ver-
sion of the lexicon described in (Beth War-
riner et al., 2013).

Note that the lexicons are not directly used on
tweet data, but rather that lexical features are ex-
tracted after applying the same data cleaning and
tokenization process which we described for the
training data to each one of the lexicons listed.

2.3 Word embeddings

Word embeddings are another popular choice for
feature extraction. We employ pre-trained word
embeddings for English and train our own embed-
dings on separated Arabic and Spanish tweet data
that we manually collected. All sets of embed-
dings comprise 400 dimensions and are detailed
below for each language:

e English: Word2vec skip-gram embeddings,
trained on the Edinburgh Twitter Corpus
(Petrovi¢ et al., 2010).

e Arabic: Word2vec skip-gram embeddings,
trained on 4.38 million tweets>.

e Spanish: Word2vec skip-gram embeddings,
trained on 3.02 million tweets®.

2.4 Manually-crafted representations

In the Arabic and Spanish subtasks, some model
components in our ensemble use a combination of
the two types of representations described so far
(lexical features and word embeddings) as an in-
put feature vector. To obtain this, we average the
embeddings corresponding to each word in a given
tweet up to a maximum of 25 words, and append
the computed lexical features to the result. These
features are extracted using the filters provided
in the Affective Tweets package (Mohammad and
Bravo-Marquez, 2017) available for WEKA (Hall
et al., 2009). In this paper, we will refer to this
combined representation as Av ngxRep.
?Available for download from akulmizev.com/
embeddings/ar_tweets.csv.

4Available for download from akulmizev.com/
embeddings/es_tweets.csv.
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Figure 2: Diagram of our system which describes how the different models used are ensembled. The
outputs of each component in the ensemble are averaged into a single score.

2.5 Learned representations

Engineering a representation of the data (such as
a the one described in Section 2.4) that can sup-
port effective machine learning is a complex task,
requiring human ingenuity and domain-specific
knowledge. Representation learning techniques
(Bengio et al., 2003) enable machine learning al-
gorithms to automatically extract and organize dis-
criminative features, thereby mapping raw data
into forms that make it easier to extract useful in-
formation. Some model components in our en-
semble employ this kind of representation, which
we obtain using 2 different methods:

e Encoding a tweet using (Conneau et al.,
2017)’s BiLSTM-max pooling encoder,
which is pre-trained on a natural language
inference dataset® and produces representa-
tions that perform well on a wide variety of
NLP tasks. This approach in particular em-
ploys GloVe word embeddings (Pennington
et al., 2014) as input and produces a vector
containing 4096 dimensions, to which we
will refer with the name In fe;Rep. How-
ever, note that we only produce this feature
vector for the English language subtasks.

e Encoding a tweet using one or a combina-
tion of three neural architectures which use
skip-gram word embeddings (Mikolov et al.,
2013) as input and are trained on the shared

SStanford Natural Language Inference dataset (Bowman
et al., 2015). This is only available for English.

task’s training data for regression subtasks.
These correspond to the CNN, Bi-LSTM and
CHAR-LSTM models described in Section
3. Representations produced by the CHAR-
LSTM model are of dimension 612°, and the
ones obtained via the Bi-LSTM model are of
dimension 512. Representations produced by
the CNN model have different dimensional-
ity depending on the number and size of fil-
ters used. We will collectively refer to such
representations with the name Reg_Rep.

3 System architecture

While Reg_Rep is produced as part of end-to-
end trainable regression and classification models,
AngEwRep and In fe?‘Rep are generated inde-
pendently. Thus, Angngep and Inf e_f“Rep are
fed separately into these models after being gener-
ated. The pipeline of our ensemble is represented
schematically in Figure 2.

3.1 Neural models

We implement three varieties of neural network ar-
chitectures which are commonly used in text clas-
sification tasks using Keras (Chollet et al., 2015)
with a TensorFlow backend. In all of them, our ob-
jective function is Mean Squared Error (MSE) and
dropout (Srivastava et al., 2014) is used for regu-
larization at various levels. These architectures are
listed below:

6512 dimensions correspond to word final hidden states
and 100 dimensions to character hidden states.
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e Convolutional Neural Network (CNN) with
max pooling.

¢ Bidirectional Long-Short Term Memory (Bi-
LSTM) with attention.

e Combined character and word features bi-
LSTMs (CHAR-LSTM).

3.2 Regression

For AvgLexRep and InferRep, which are not part of
an end-to-end trainable model, we perform regres-
sion using either a feed-forward Deep Neural Net-
work (DNN) or Gradient Boosted Trees (GBT)’.
The depth of the feed-forward network is deter-
mined constructively, starting with one layer and
adding layers which are half the size of the pre-
vious one until performance on cross-validation
stops improving.

3.3 Model selection for regression

We perform model selection using 5-fold cross-
validation on the training data from the shared
task. In each subtask that involves regression, the
possible models are ranked according to their indi-
vidual performance and ensembled through simple
averaging. The ensemble itself is built construc-
tively based on the ordering defined by the rank-
ing, starting from a single component and adding
components in order whenever the average perfor-
mance on cross-validation improves.

Ensembling has long been shown to be an ef-
fective method of variance reduction for complex
models (Perrone, 1993), and we indeed find in our
experiments that averaging predictions leads to re-
sults better than those of any individual model®.

Furthermore, we also find predictions obtained
via simple averaging to be more accurate (on
cross-validation) compared to those obtained via
feeding the outputs from all model components
into a sigmoid layer. Although such a finding
might appear counter-intuitive, it can perhaps be
explained through the fact that the training dataset
is relatively small, and therefore ensembling via a
non-linear function of the outputs can potentially
lead to overfitting.

"We use the GBT implementation provided in scikit-learn
(Pedregosa et al., 2011).

8We refer the reader to (Hashem and Schmeiser, 1993) for
an explanation of why this is the case.
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3.4 Ordinal classification

Our system for each ordinal classification subtask
makes use of the ensemble model which we build
for the corresponding regression subtask in the
same language, and model selection is performed
using the same procedure described in Section 3.3.
However, instead of averaging the predictions, the
best model’s predictions are concatenated and fed
as features to an ordinal meta-classifier (Antoniuk
et al., 2013).

3.5 Hyperparameter tuning

Hyper-parameter optimization is carried out us-
ing 5-fold cross-validation. At first, a reason-
able range is determined manually, and then grid-
search is performed within that range. For Gra-
dient Boosted Trees, the hyper-parameters opti-
mized are maximum tree depth, number of estima-
tors, and maximum leaf nodes. For neural models,
the parameters optimized are batch size, number
of epochs, size of the layers or filters, and whether
or not dropout is used at different levels. Dropout
is by default always set at 0.2. Furthermore, we
use a fixed random seed to enable replicability.

4 Evaluation

‘ Anger ‘ Sadness ‘ Joy ‘ Fear
System ‘ CV Test ‘ CV Test ‘ CV  Test ‘ CV  Test
DNN (Infer.) | 0.707 0.703 | 0.755 0.654 | 0.713 0.667 | 0.742 0.701
GBT (Infer.) | 0.716 0.707 | 0.739  0.677 | 0.708 0.688 | 0.748 0.697
CHAR-LSTM | 0.698 0.682 | 0.716 0.626 | 0.722 0.700 | 0.727 0.663
CNN 0.642 0.636 | 0.521 0.4316 | 0.637 0.628 | 0.615 0.459

Ensemble | 0.756 0.749 | 0.770  0.699 | 0.758 0.740 | 0.773 0.726

Table 1: Comparison of Pearson correlation
cross-validation (CV) and official results (Test)
scores in the Emotion Intensity regression
(El-reg) English subtasks. Results are given for
both the ensemble and its individual models.

Table 1 displays the scores (both 5-fold cross-
validation and test scores) of the individual models
and the ensemble model for the Emotion Intensity
English regression subtasks. The ensemble model
in this case is always for the best three models.
Table 2 shows the results obtained using 5-fold
cross-validation on the combined training and de-
velopment data and the official test set results for
each subtask. All scores are reported as the Pear-
son correlation coefficient between our system’s
predictions and the provided gold-labels (i.e. hu-
man judgments).



. English Arabic Spanish
Task Emotion Ccv Test CvV Test Ccv Test
Anger 0.756 0.749 | 0.620 0.647 | 0.731 0.676
Joy 0.758 0.740 | 0.690 0.756 | 0.712 0.753
El-reg | Fear 0.773 0.726 | 0.619 0.642 | 0.720 0.776
Sadness 0.770 0.669 | 0.717 0.694 | 0.728 0.746
Macro-avg. | 0.764 0.728 | 0.662 0.685 | 0.723 0.738
V-reg | Valence 0.800 0.829 | 0.820 0.816 | 0.775 0.795
Anger 0.670 0.620 | 0.620 0.551 | 0.635 0.606
Joy 0.701 0.686 | 0.610 0.631 | 0.668 0.667
El-oc | Fear 0.635 0.528 | 0.565 0.551 | 0.658 0.706
Sadness 0.738 0.622 | 0.682 0.618 | 0.655 0.677
Macro-avg. | 0.691 0.616 | 0.619 0.587 | 0.654 0.664
V-oc Valence 0.770 0.776 | 0.778 0.752 | 0.749 0.756

Table 2: Pearson correlation using cross-validation (CV) on the trainining data and official results of the
shared task (Test) obtained with our system, for each one of the Emotion Intensity (EI), Valence (V),
regression (reg) and ordinal classification (oc) subtasks.

5 Analysis

It can be observed in Table 2 that the test and
cross-validation scores are similar, meaning that
cross-validation provided an accurate estimate of
the generalization error and that our system’s over-
fitting of the different combined training and de-
velopment sets is minimal. In fact, for the En-
glish valence subtasks, the Arabic Emotion Inten-
sity regression subtask and all Spanish subtasks
except the ones involving anger as the target emo-
tion, the test scores are higher or equal than the
cross-validation scores. This indicates both that
our system generalizes appropriately and that the
test sets are not substantially different than the
training sets.

Overall performance is higher for English,
likely due to the availability of better quality lexi-
cons and word embeddings. Nonetheless, it is in-
teresting to note that on average, cross-validation
provided an optimistic estimate of the generaliza-
tion error for English and a pessimistic one for
Spanish and Arabic.

Furthermore, as shown in Table 1 for various
English regression subtasks, it is clear that the en-
semble outperforms all individual models on both
cross-validation and the test set. This points to-
wards the success of our ensembling method in
reducing the variance of individual models. We
omit similar results for other subtasks because the
trend displayed by those is comparable.

Finally, it is interesting to note that the mod-

els using Inf e;Rep (DNN and GBT), which rely
on tweet representations produced through trans-
fer learning from Natural Language Inference,
outperformed the models using the task-specific
RegRep (CNN, Bi-LSTM and CHAR-LSTM) for
all emotions except Sadness.

6 Conclusion and future work

In this paper we have described AffecThor, the sys-
tem which we submitted to the SemEval-2018 Af-
fects in Tweets shared task. AffecThor uses three
different types of learned and manually-crafted
representations and is an ensemble of neural and
non-neural models. It is the best performing sys-
tem on 5 out of 12 subtasks, and the second best
performing in 3 others. Furthermore, it is arguably
the best overall performer for Spanish and Arabic.

Our work explored two methods of ensembling
regressors: simple averaging and using a non-
linearity (sigmoid) layer on top of the different
sub-models as part of an end-to-end trainable neu-
ral model, and found that simple averaging is
more robust. However, we believe that ensembling
using a linear combination (weighted-averaging)
where the weights are learned could lead to bet-
ter results, as is shown in (Perrone, 1993; Hashem
and Schmeiser, 1993).

Finally, the availability of fine-grained labeled
data across emotions and languages opens up the
possibility of investigating multi-task and multi-
lingual learning objectives. In the future, we
would like to extend this work in that direction.
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