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Abstract

This paper describes our approach to
SemEval-2018 Task1: Estimation of Af-
fects in Tweet for 1a and 2a. Our team
KDE-AFFECT employs several methods
including one-dimensional Convolutional
Neural Network for n-grams, together with
word embedding and other preprocessing
such as vocabulary unification and Emoji
conversions into four emotional words.

1 Introduction

With the rapid spread of SNS services (e.g. Twit-
ter, Facebook, Instagram), massive user opinions
have accumulated on the Internet. Among such
opinions, it has been observed that not a few SNS
contents naturally entail the affects (including joy,
anger, sadness, fear) within themselves. Hence,
the need to accurately detect the affects is increas-
ing year by year.

In SemEval-2018 Task 1: Estimation of Affects
in Tweet, we have attempted to extend our hori-
zon from positive, neutral, and negative polarity
estimations in former SemEval sentiment analy-
sis in tweet having been held till 2017, to mul-
tiple emotions (joy, anger, sadness, and fear) in
terms of regression (Task-1 1a) and classification
(Task-1 2a). In doing so, we have adopted a stan-
dard one-dimensional Convolutional Neural Net-
work (CNN), which is believed to be effective for
text polarity estimation, where the kernel window
size for 1D convolution is analogous to the con-
cept of word n-gram. In addition, as most peo-
ple have noticed, a tweet has potentially many
Emojis to express emotions. In the following, we
first briefly survey related work on tweet sentiment
analysis including emotion estimation. Then, we
describe our system, followed by showing the re-
sults returned from the organizer, and finally con-
cluding our paper.

2 Related Work

Sentiment analysis of tweets has been studied
by many researchers from the standpoint of clas-
sifying a tweet into either positive or negative
polarity, and classifying it into multiple emo-
tions (Giachanou and Crestani, 2016; Silva et al.,
2016). A supervised approach to polarity clas-
sification of a tweet was proposed by Go et
al. (2009). They employed Naive Bayes, Maxi-
mum Entropy, Support Vector Machine, and sev-
eral other machine learning methods for their su-
pervised learning. Bravo-Marque et al. (2013) pre-
sented an approach using multiple emotion dic-
tionaries, while Saif et al. (2016) employed co-
occurrence information of words. Severyn et
al. (2015) introduced a deep learning approach.
Lu et al. (2013) proposed a deep learning method
suited for short texts. In SemEval, since 2014, sen-
timent analysis tasks using Twitter have been offi-
cially conducted, where a variety of methods have
been tested (Hagen et al., 2015; Giorgis et al.,
2016; Deriu et al., 2016; Rouvier and Favre, 2016;
Xu et al., 2016). In SemEval2017 Rosenthal et
al. (2017), Cliche et al. (2017) and Hamdan et
al. (2017) presented methods for combining mul-
tiple Convolutional Neural Networks (CNNs) and
multiple Long Short-Term Memories (LSTMs).
Mohammad (2017) published an open dictionary
of emotion scores for each word. Mohammad et
al. published a dataset for estimating emotion in-
tensities (Mohammad and Bravo-Marquez, 2017).

3 Methodology

In this section, we focus on our methods and ideas
employed in this task. The fundamental idea of
our method is based on the observation that “n-
grams” seem to have vital effects to represent the
emotion of a tweet, where “n-gram” denotes n
consecutive words (instead of n consecutive char-
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Figure 1: Overall Training Flow of KDE-AFFECT

acters). For instance, if the tweet sentence is “At
last I made it.”, 2-gram includes (At, last) and
(made, it). Similarly, 3-gram includes (At, last,
I) and (I, made, it).

We have adopted the method based on the n-
gram convolution proposed by Kim (2014). Here,
we prepare a matrix corresponding to a sentence
representing an n-gram convolution in which this
filtering process is carried out by the unit of an n-
gram.

The overview of our system is as follows: First
we apply preprocessing with “vocabulary unifica-
tion” including lower case conversion, URL unifi-
cation, two or more consecutive character squeez-
ing, and hashtag elimination. Second, we ap-
ply Emoji conversion into four emotional words,
which will be elaborated later. From Emoji con-
version, we train the model independently for each
emotion. Finally, we predict the emotion score for
an unknown tweet by using the trained model. The
overall system flow is shown in Figure 1.

3.1 Preprocessing with Vocabulary
Unification

This step is applied to all emotions. It consists of
the following processing:

• lower case conversion
• conversion of every instance of a URL string

in a tweet to “<URL>”
• collapse of two or more consecutive letters

into two
• elimination of hash sign (#)

It should be noted that by a url string we mean
a regular expression starting with either “http”,
“https”, “ftp”, or “www”. Any url string is con-
verted to <URL>. For example, “I want to be

happy on http://t.co/S6moxr1U” is converted to “I
want to be happy on <URL>”.

3.2 Preprocessing for Emoji

From our observation of real tweets, approxi-
mately more than 20% of them have some kind
of Emojis. Emotions are naturally represented by
many different Emojis. Hence, we introduce the
conversion of possible emotions represented by an
Emoji into each emotional word. Please note that
Emoji preprocessing is applied to all Emoji data,
regardless of emotions. For instance, each anger
Emoji might appear not only in an Anger dataset,
but in Fear, Joy, and Sadness datasets as well. This
is why we have decided to apply the Emoji conver-
sion despite the differences of emotions. In the fol-
lowing, we present Emoji for each emotion, where
Emoji has been taken from a Full Emoji Web site1.
The selection of Emoji has been made by using the
labels (such as “face-positive”) annotated to the
above Web sites.

3.2.1 Anger Emoji
The Anger Emojis we selected are shown in Fig-
ure 2. All of them are replaced by ”anger”.

Figure 2: Anger Emoji

3.2.2 Fear Emoji
The Fear Emojis we selected are shown in Fig. 3.
All of them are replaced by ”fear”.

1https://unicode.org/emoji/charts/full-emoji-list.html
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Figure 3: Fear Emoji

3.2.3 Joy Emoji
The Joy Emojis we selected are shown in Fig. 4.
All of them are replaced by ”joy”.

Figure 4: Joy Emoji

3.2.4 Sadness Emoji
The Sadness Emojis we selected are shown in
Fig. 5. All of them are replaced by ”sadness”.

Figure 5: Sadness Emoji

3.3 Convolutional Neural Network for
n-gram

Once preprocessing is done, we have a kind of rec-
tified tweet, represented by a matrix. Figure 6 il-
lustrates a word-by-word matrix representation of
a rectified tweet. Here we take a matrix of 80 by
300, where 80 is the maximum number of words
per tweet, and 300 corresponds to our embedding
vector size. If a tweet has less than 80 words, zero
padding is performed to fill the input matrix.

3.3.1 Embedding
In Embedding, each tweet is converted to a matrix.
Specifically, we first divide a tweet into words us-
ing a whitespace, thereby treating a special char-
acter (one of “.h, “,h, “!h, and “?h ) as a separate
word. Second, we transform each word into its
distributed representation of 300 dimensions using
Word2Vec (Mikolov et al., 2013a,b). The train-
ing of Word2Vec itself is done by using approxi-
mately 470 million tweets after the processing de-
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Figure 6: Our n-gram Convolution-based Approach

scribed in 3.1. We finally obtain the embedding by
padding zero values to a fixed size of a 80 by 300
dimensional matrix.

3.3.2 n-gram Convolution Layer
In an n-gram convolutional layer, we perform con-
volution, and generate a length m − n + 1 vec-
tor, where m denotes the maximum word length
(here 80). This is straightforward, since both ends
are trimmed during the n-gram convolution stage
shown in Figure 6. For instance, if 3-gram is con-
cerned, the length in our implementation will be
80-3+1 = 78. Note that we have multiple n-gram
convolutional layers for each emotion. “Joy” neu-
ral network architecture, for example, has 2-gram,
3-gram, 4-gram, and 5-gram convolutional layers,
which will be discussed later in Table 3.

input

embedding

2-gram conv 3-gram conv 4-gram conv 5-gram conv

MaxPooling1D MaxPooling1D MaxPooling1D MaxPooling1D

flattenflattenflatten flatten

concatenate

Batch Normalization

Dropout(0.5)

Dense(outputs = 30dims,sigmoid)

Dense(outputs = 1dim ,sigmoid)

Figure 7: KDE-AFFECT system’s DNN architecture

3.3.3 Max Pooling Layer
In a Max Pooling layer, from each n-gram con-
volutional layer, the maximum value is computed,
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Intensity range Intensity amount
[0.0, 0.35) 0 (no E)
[0.35, 0.5) 1 (low amount of E)
[0.5, 0.65) 2 (moderate amount of E)
[0.65, 1.0] 3 (high amount of E)

Table 1: Inferred Intensity Level

and a vector of the length equal to the number of
filters is generated. In our system, the output of
four multiple n-gram convolutional layers are flat-
tened and concatenated in the subsequent layers.
The output dimension is the number of filters mul-
tiplied by the number of n-gram convolutional lay-
ers.

3.3.4 Fully-connected Layers

In our system, we have two fully-connected layers,
where the first hidden fully-connected layer ac-
cepts the input from the concatenation layer con-
nceted from multiple max pooling layers. Em-
pirically, we set 30 outputs for the first fully-
connected layer. The second layer outputs either
the estimated intensity value of an emotion (Task
1a) or the estimated intensity level (Task 2a). The
way to estimate the intensity level (Task 2a) is
elaborated in the next section.

3.4 Estimating Intensity Level (Task 2a)

For Task 2a, we need to estimate the intensity
level. Specifically, participants are required to
classify the emotional intensities into four levels;
high amount, moderate amount, low amount, and
nothing. Our strategy for the amount of emotional
intensity amount level is simple, which is based on
the inferred intensity range as shown in Table 1. In
Table 1, the left column denotes the range of emo-
tional amount that we have defined for this task.
For example, [0.0, 0.35) means that the left bound-
ary 0.0 is inclusive, while the right boundary 0.35
is exclusive in the range of the amount of emotion.

4 Experiments

Here we describe the experimental environment
and our evaluation results.

4.1 dataset

All participants are given SemEval 2018: Task 1
Affect in Tweets (AIT) (Mohammad et al., 2018)
dataset. The details are shown in Table 2.

Anger Fear Joy Sadness
Training 1701 2252 1616 1532

Dev. 388 389 290 397
Test (1a) 17940 17924 18043 17913
Test (2a) 1002 986 1105 975

Table 2: SemEval 2018: Task 1 dataset (1a and 2a)

4.2 Evaluation Measure
Here, the evaluation measure for a model is cor-
relation coefficient r. Given variables x and y,
where x corresponds to a predicted emotion value
and y to a true emotion value, and their associated
sample variances Sx, Sy, and the covariance Sxy

are represented by the following equation:

r =
Sxy

SxSy

4.3 Experiment Environment
For our deep learning program for the task,
we used the following list of hyper-parameters:

loss function: Root Mean Square Error (RMSE)
filter number: 200 × n
epochs: 30
dropout rate: 0.5
optimizer: Adam
batch size: 64

The framework we use is Keras with backend
Tensorflow. In our Ubuntu server, it took approxi-
mately 1 second for each epoch.

4.4 Preliminary Experiments for n-gram
Convolutions

For each emotion, our system attempts to find an
empirical optimal combination of n-gram convo-
lutions. Table 3 summarizes the results of prelimi-
nary experiments for this purpose. Here, r(A) de-
notes the correlation coefficient for Anger. Sim-
ilarly, r(F ) for Fear, r(J) for Joy, and r(S) for
Sadness. From the table, we decided as follows:
For Anger, we chose [1,2,3,4,5,6] (meaning we
took the combination of 1-gram, 2-gram, 3-gram,
4-gram, 5-gram, and 6-gram convolutions). For
Fear, we chose [2,3,4,5,6]. For Joy and Sadness,
we chose [2,3,4,5].

4.5 Experimental Result (Task 1a)
According to the Official Leaderboard for Task 1a,
our team KDE-AFFECT turned out to be 30-th. If
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n r(A) r(F ) r(J) r(S)

[1, 2, 3, 4, 5, 6] 0.5529 0.5919 0.5771 0.6349
[2, 3, 4, 5, 6] 0.5518 0.5994 0.5464 0.6173
[1, 2, 3, 4, 5] 0.5381 0.5948 0.5730 0.6078
[2, 3, 4, 5] 0.5309 0.5736 0.5906 0.6360

Table 3: Preliminary experiments for n-gram convolustions

Team avg-r r(A) r(F ) r(J) r(S)

KDE-AFFECT 0.620 0.630 0.621 0.598 0.630
SeerNet1st 0.799 0.827 0.799 0.792 0.798

NTUA-SLP2nd 0.776 0.782 0.758 0.771 0.792
PlusEmo2Vec3rd 0.766 0.811 0.728 0.773 0.753
CrystalFeel14th 0.717 0.740 0.700 0.708 0.720
EliRF-UPV15th 0.696 0.705 0.686 0.693 0.700

iit delhi29th 0.621 0.633 0.645 0.618 0.588
DeepMiner31th 0.575 0.581 0.570 0.575 0.573

Baseline37th 0.520 0.526 0.525 0.575 0.453

Table 4: Our result with selected other teams for Task 1a

Team avg-r r(A) r(F ) r(J) r(S)

KDE-AFFECT 0.530 0.530 0.470 0.552 0.567
SeerNet1st 0.695 0.706 0.637 0.720 0.717

PlusEmo2Vec2nd 0.659 0.704 0.528 0.720 0.683
psyML3rd 0.653 0.670 0.588 0.686 0.667
UNCC9th 0.599 0.604 0.544 0.638 0.610
ECNU16th 0.531 0.565 0.441 0.581 0.536

CrystalFeel18th 0.530 0.576 0.466 0.540 0.538
Baseline26th 0.394 0.382 0.355 0.496 0.370

Table 5: Our result with selected other teams for Task 2a

we use similar notations as in Table 3, and pick up
the top-3 ranked teams, as well as randomly cho-
sen teams CrystalFeel (14-th place), ELipRF-UPV
(15-th place), iit delhi (29-th), DeepMiner (31-th),
and the baseline (37-th), the result looks like Ta-
ble 4.

4.6 Experimental Result (Task 2a)
According to the Official Leaderboard for Task 2a,
our team KDE-AFFECT turned out to be 17-th. If
we use similar notations as in Table 3, and pick up
top-3 ranked teams, as well as randomly chosen
teams UNCC (9-th place), ECNU (16-th place),
CrystalFeel (14-th place), and the baseline (26-th),
the result looks like Table 5.

5 Conclusion

This paper describes the approach we took for
SemEval-2018 Task 1: Affect in Tweets (subtasks

1a and 2a). We have chosen a combination of dif-
ferent n-gram convolutions with preprocessing in-
cluding vocabulary unification and Emoji conver-
sion.
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