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Abstract

Detecting irony is an important task to mine
fine-grained information from social web mes-
sages. Therefore, the Semeval-2018 task 3
is aimed to detect the ironic tweets (subtask
A) and their irony types (subtask B). In or-
der to address this task, we propose a system
based on a densely connected LSTM network
with multi-task learning strategy. In our dense
LSTM model, each layer will take all outputs
from previous layers as input. The last LSTM
layer will output the hidden representations of
texts, and they will be used in three classifi-
cation task. In addition, we incorporate sev-
eral types of features to improve the model
performance. Our model achieved an F-score
of 70.54 (ranked 2/43) in the subtask A and
49.47 (ranked 3/29) in the subtask B. The ex-
perimental results validate the effectiveness of
our system.

1 Introduction

Figurative languages such as irony are widely used
in web messages such as tweets to convey different
sentiment. Identifying the ironic texts can help to
understand the social web better and has many ap-
plications such as sentiment analysis (Ghosh and
Veale, 2016). Irony detecting techniques are im-
portant to improve the performance of sentiment
analysis. For example, the tweet “Monday morn-
ings are my fave:)# not” is an irony with nega-
tive sentiment, but it will be probably classified
as a positive one by a standard sentiment analysis
model (Van Hee et al., 2016b). Thus, capturing
the ironic information in texts is useful to predict
sentiment more accurately (Van Hee et al., 2016a).

However, determining whether a text is ironic
is a challenging task since the the differences be-
tween ironic and non-ironic texts are usually sub-
tle. For example, the tweet “Love this weather
#not” is ironic, but a similar tweet “Hate this

weather #not happy” is non-ironic. Different
approaches are proposed to recognize the com-
plex irony in texts. Existing methods to detect
irony are mainly based on rules or machine learn-
ing techniques (Joshi et al., 2017). Rules based
methods usually depend on lexicons to identify
irony (Khattri et al., 2015; Maynard and Green-
wood, 2014). However, these methods cannot uti-
lize the contextual information from texts. Tra-
ditional machine learning based methods such as
SVM (Desai and Dave, 2016) are also effective
in this task, but they usually need manually fea-
ture engineering (Barbieri et al., 2014). Recently,
deep learning techniques are successfully applied
to this task. For example, Ghosh et al. (2016)
propose to use a CNN-LSTM model to classify
the ironic and non-ironic tweets. Their method
can significantly improve the classification perfor-
mance without heavy feature engineering. How-
ever, existing methods are aimed to detect irony
in tweets with explicit irony related hashtags. For
example, tweets with #irony or #sarcasm hashtags
are very likely to be ironic. Therefore, models may
focus on these hashtags rather than the contextual
information.

To fill this gap, the SemEval-2018 task 31 aims
to detect irony of tweets without explicit irony
hashtags (Van Hee et al., 2018). The subtask A is
aimed to determine whether a tweet is ironic. the
subtask B is aimed to identify the irony types of
tweets: Verbal irony by means of a polarity con-
trast, other verbal irony and situational irony. Sev-
eral examples are as follows:

• verbal irony by means of a polarity con-
trast: I love waking up with migraines #not

• other verbal irony: @user Yeah keeping
cricket clean, that’s what he wants #Sarcasm

1https://competitions.codalab.org/competitions/17468
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Figure 1: Architecture of our Dense-LSTM model. The V-irony, O-irony and S-irony denote the three different
irony types respectively (Van Hee et al., 2018).

• situational irony: most of us didn’t focus in
the #ADHD lecture. #irony

In order to address this problem, we propose
a system2 based on a densely connected LSTM
model (Wu et al., 2017) with multitask learning
techniques. In our model, each LSTM layer will
take all outputs of previous LSTM layers as in-
put. Then different levels of contextual informa-
tion can be learned at the same time. Our model is
required to predict in three tasks simultaneously:
1) identifying the missing irony related hashtags;
2) classify ironic or non-ironic; 3) irony type clas-
sification. By using multitask learning strategy,
the model can combine the information in the dif-
ferent tasks to improve the performance. The ex-
perimental results in both subtasks validate the ef-
fectiveness of our method.

2 Densely Connected LSTM with
Multi-task Learning

The architecture of our densely connected LSTM
model is shown in Figure 1. We denote this model
as Dense-LSTM. The detailed information will be
introduced in the following paragraphs.

In our model, the embedding layer is used to
convert the input tweets into a sequence of dense
vectors. The POS tag features Pi are one-hot
encoded and concatenated with the word embed-
ding vectors Ei. Usually the affective words
and creative languages in tweets are important

2https://github.com/wuch15/SemEval-2018-task3-
THU NGN.git

irony clues. Since these words usually have spe-
cific POS tags, adding these features can help
our model to capture the ironic information bet-
ter. We use tweetokenize3 tool to tokenize and the
Ark-Tweet-NLP4 tool to obtain the POS tags of
tweets (Owoputi et al., 2013).

The first Bi-LSTM layer takes the sequential
vectors as input. For the jth Bi-LSTM layer,
its output Hj will input all LSTM layers after
it. As shown in Figure 1, the blue dashed lines
represent such over-layer connections. All in-
puts of an LSTM layer will be concatenated to-
gether. Thus, the input of the jth (j > 1) layer
is [H1; ...;Hj−1]. It indicates that each layer can
learn different levels of information at the same
time. Since the irony information is complex,
jointly using all levels of information is benefi-
cial to predict irony more accurately. The last
LSTM layer will output the hidden representation
H of texts. It will be concatenated with the sen-
timent features and the sentence embedding fea-
tures. The sentiment features can provide addi-
tional sentiment information to detect irony, such
as the sentiment polarity assigned by lexicons.
The sentiment features are generated via the Af-
fectiveTweets5 package in weka provided by Mo-
hammad et al. (Mohammad and Bravo-Marquez,
2017). We use the TweetToLexiconFeatureVec-
tor (Bravo-Marquez et al., 2014) and TweetToSen-

3https://github.com/jaredks/tweetokenize
4http://www.cs.cmu.edu/ ark/TweetNLP
5https://github.com/felipebravom/AffectiveTweets
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tiStrengthFeatureVector (Thelwall et al., 2012) fil-
ters in this package. The embedding of a sentence
is obtained by taking the average of all words in
this sentence using the 100-dim pre-trained em-
bedding weights provided by Bravo et al. (Bravo-
Marquez et al., 2016). By incorporating the vector
representation of tweet sentence, the irony infor-
mation can be easier to be captured.

Three dense layers with ReLU activation are
used to predict for three different tasks including:
determining the missing ironic hashtags (i.e. #not,
#sarcasm, #irony or none of them) (task1); identi-
fying ironic or non-ironic (task2) ; identifying the
irony types (task3). Thus, the objective function
of our model can be formulated as:

L = α1L1 + α2L2 + α3L3, (1)

where Li and αi denote the loss function and its
weight of task i. L1 and L2 are categorical and
binary cross-entropy respectively. In addition, the
numbers of tweets with different irony types are
very unbalanced. Motivated by the cost-sensitive
entropy used by Santos et al. (2009), we formulate
L3 as follows:

L3 = −
N∑

i=1

wyiyi log(ŷi), (2)

where N is the number of tweets, yi is the irony
type of the ith tweet, ŷi is the prediction score,
and wyi is the loss weight of irony type label

yi. wyi is defined as
∑C

k=1 Nk

Nyi
, where C is the

number of irony types and Nj is the number of
tweets with irony type label j. Thus, the infre-
quent irony types will gain relatively larger loss
weights. By using this multi-task learning method,
our model can incorporate different information
such as the irony hashtags. In addition, classify-
ing ironic/non-ironic and the irony types are simi-
lar tasks. Therefore, the performance of both tasks
can be improved by combining the information of
both tasks.

In order to improve the performance of our sys-
tem, we use an ensemble strategy by averaging the
classification results predicted by 10 models. Each
model will be trained using a random dropout rate.
Therefore in this way, the classification results will
be voted by different models, which can improve
the model performance.

3 Experiment

3.1 Dataset and Experimental Settings

The detailed statistics of the dataset6 in this task
are shown in Table 1. V-irony, O-irony and S-irony
represent the three types respectively: verbal irony
by means of a polarity contrast, other types of ver-
bal irony and situational irony (Van Hee et al.,
2018). In subtask A, the performance of systems
is evaluated by F-score for the positive class. In
subtask B, the macro-averaged F-score over all
classes is used as the metric.

Task A B
Label Ironic Non-ironic V-irony O-irony S-irony Non-ironic
#train 1911 1923 1390 316 205 1923
#test 311 473 164 85 62 473

Table 1: The detailed statistics of the dataset.

We combine two pre-trained word embed-
dings: 1) the embeddings provided by Godin et
al. (2015), which are trained on a corpus with 400
million tweets; 2) the embeddings provided by
Barbieri et al. (2016), which are trained on 20 mil-
lion tweets. The dimensions of them are 400 and
300 respectively. They are concatenated together
as the embeddings of words.

In our network, the Dense-LSTM model has 4
LSTM layers with 200-dim hidden states. The
hidden dimensions of dense layers are set to 300.
The dropout rate of each layer is set to a random
number between 0.2 to 0.4, and it will be set to
a fixed value 0.3 in the comparative experiments
without ensemble strategy. In subtask A, the loss
weights α of the three task are set to 0.5, 1 and 0.5
respectively. In subtask B, they are 0.5, 0.5 and 1.
We use RMSProp as the optimizer, and the batch
size is set to 64. In addition, we use 10% training
data for validation to select the hyperparameters
above.

3.2 Performance Evaluation

We compare the performance of different meth-
ods including: 1) SVM, the benchmark system us-
ing SVM and BOW model; 2) CNN, using CNN
with a global average pooling layer to obtain the
hidden vector h, which is used to predict in the
three tasks; 3) LSTM, using one Bi-LSTM layer
in the network to get h; 4) 2-layer LSTM, using
2 Bi-LSTM layers; 5) Dense-LSTM, using our

6https://github.com/Cyvhee/SemEval2018-
Task3/tree/master/datasets
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Dense-LSTM model; 6) Dense-LSTM+ens, us-
ing our Dense-LSTM model and ensemble strat-
egy. In addition, we apply multi-task learning
technique to all models except the benchmark sys-
tem based on SVM. The results are shown in Table
1. The experimental results show that our Dense-
LSTM model significantly outperforms the base-
lines. Since the layers in our Dense-LSTM can
learn from all previous outputs, our model can
combine different levels of contextual information
to capture the high-level irony clues. In addition,
our model can predict more accurately via ensem-
ble. Since models with random dropout can ex-
tract different information, we can take advantage
of all models by voting. The ensemble strategy
can reduce the noise in the dataset and make our
system more stable (Xia et al., 2011).

Model
Subtask A Subtask B

P R F Macro-F
Baseline 54.78 62.70 58.47 32.69

CNN 59.32 61.41 60.35 45.30
LSTM 57.73 67.20 62.11 45.76

2-layer LSTM 60.34 68.49 64.16 47.16
Dense-LSTM 62.78 72.69 67.36 48.28

Dense-LSTM+ens 63.04 80.06 70.54 49.47

Table 2: The performance of different methods. P, R, F
represent precision, recall and F-score respectively.

3.3 Effectiveness of Multi-task Learning

The performance of our Dense-LSTM model us-
ing different combinations of training tasks is
shown in Table 3. Note that we don’t apply model
ensemble here. Compared with the models trained
in task2 or task3 only, the combination of both
tasks can improve the performance. It may be be-
cause the two tasks have inherent relatedness and
can share rich mutual information. Learning to
predict the missing ironic hashtags (task1) can also
improve the model performance. Since the ironic
hashtags are often important ironic clues, identify-
ing such clues can help our model to mine ironic
information better.

3.4 Influence of Pre-trained Word
Embedding

We compare the performance using different com-
binations of pre-trained embeddings in our model.
The results are illustrated in Table 4. The results
show that the pre-trained embeddings are impor-
tant to capture irony information, and using the

Task Combination
Subtask A Subtask B

P R F Macro-F
task2 60.05 71.06 65.10 -
task3 - - - 44.65

task2+task3 61.81 72.34 66.67 46.94
task1+task2 61.33 71.38 65.97 -
task1+task3 - - - 45.57

task1+task2+task3 62.78 72.69 67.36 48.28

Table 3: The performance in two subtasks using differ-
ent combinations of training tasks.

combination of two different word embeddings
can improve the model performance. It proves
that this method can reduce the out-of-vocabulary
words in the single embedding file and provide
richer semantic information.

Feature
Subtask A Subtask B

P R F Macro-F
w/o pre-trained 56.25 67.14 61.21 42.28

+emb1 60.96 69.95 65.14 47.69
+emb2 61.77 70.59 65.89 47.24

+emb1 +emb2 62.78 72.69 67.36 48.28

Table 4: Influence of pre-trained word embedding. The
emb1 and emb2 denote the embeddings provided by
Godin et al. (2015) and Barbieri et al. (2016) respec-
tively.

3.5 Influence of Additional Features
The influence of different features on our model is
shown in Table 5. According to this table, all fea-
tures can improve the classification performance
in both subtasks, and the combination of the three
features can achieve better performance. The im-
provement brought by POS tags is most signifi-
cant. Affective words are important irony clues
and they are usually verbs, adjectives or hashtags.
Thus, incorporating the POS tag features can help
to identify these words and capture the ironic in-
formation better. The sentiment features also im-
prove our model, which can be inferred from the
results. The sentiment polarities of ironic tweets
are usually negative, but these texts often contain
positive sentiment words. Since our sentiment fea-
tures are obtained by several different sentiment or
emotion lexicons, they can be used to assign the
sentiment scores of texts, which can provide rich
information to detect irony. The sentence embed-
ding can also slightly improve the performance.
The sentence embedding contains information of
each word in the sentence. Thus, it can help to
capture the word information better, which is ben-
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eficial to identify the overall sentiment of texts.
The combination of all three types of features can
take advantage of them and gain significant perfor-
mance improvement. It validates the effectiveness
of each type of features.

Feature
Subtask A Subtask B

P R F Macro-F
None 59.84 70.42 64.70 45.56

+POS tags 61.04 72.03 66.08 46.61
+Sentiment Features 61.16 71.38 65.88 46.37

+Sentence Embedding 61.39 71.06 65.87 46.24
+All Features 62.78 72.69 67.36 48.28

Table 5: Influence of different features on our model.

4 Conclusion

Detecting irony in web texts is an important task
to mine fine-grained sentiment information. In or-
der to address this problem, we develop a sys-
tem based on a densely connected LSTM model
to participate in the SemEval-2018 Task 3. In our
model, every LSTM layer will take all outputs of
previous layers as inputs. Thus, the different lev-
els of information can be learned at the same time.
In addition, we propose to combine three differ-
ent tasks to train our model jointly, which includes
identifying the missing irony hashtags, determin-
ing ironic or non-ironic and classifying the irony
types. These tasks have inherent relatedness thus
the performance can be improved by sharing the
mutual information. Our system achieved an F-
score of 70.54 and 49.47 which ranked the 2nd and
3rd place in the two subtasks. The experimental
results validates the effectiveness of our method.
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Jesús Cid-Sueiro. 2009. Cost-sensitive classifi-
cation based on bregman divergences for medi-
cal diagnosis. In Machine Learning and Applica-
tions, 2009. ICMLA’09. International Conference
on, pages 551–556. IEEE.

Mike Thelwall, Kevan Buckley, and Georgios Pal-
toglou. 2012. Sentiment strength detection for the
social web. Journal of the Association for Informa-
tion Science and Technology, 63(1):163–173.

Cynthia Van Hee, Els Lefever, and Véronique Hoste.
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