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Abstract

In this paper, we describe the system
of the KULeuven-LIIR submission for
Clinical TempEval 2017. We participated
in all six subtasks, using a combination
of Support Vector Machines (SVM) for
event and temporal expression detection,
and a structured perceptron for extracting
temporal relations. Moreover, we present
and analyze the results from our submis-
sions, and verify the effectiveness of sev-
eral system components. Our system per-
formed above average for all subtasks in
both phases.

1 Introduction

In this paper, we describe the system used for the
KULeuven-LIIR submissions at SemEval task 12,
named Clinical TempEval 2017 (Bethard et al.,
2017), which is concerned with temporal infor-
mation extraction from clinical records. In Clin-
ical TempEval extraction of temporal information
is split into six subtasks. Our system participated
in all tasks:

1. Detection of event spans (ES)

2. Identification of event attributes (EA)

3. Detection of temporal expressions (TS)

4. Attribute identification of temporal expres-
sions (TA)

5. Extraction of document-creation-time rela-
tions for events (DR)

6. Extraction of narrative container relations
(CR)

This year, a new aspect of Clinical TempEval
is that systems will be evaluated across domains,
which involves two phases: Firstly, unsupervised
domain adaptation (Phase I), where the training
data is in the colon cancer domain, and the test
data in the brain cancer domain. And secondly, su-
pervised domain adaptation (Phase II), where the
vast majority of the training data are colon cancer
reports, and a small number of brain cancer reports
is made available for training as well. The test data
is again in the brain cancer domain.

Our system consist of a combination of linear
Support Vector Machines (SVM) for entity span
and attribute recognition (tasks ES, EA, TS and
TA), and a document-level structured perceptron
(Leeuwenberg and Moens, 2017) for relation ex-
traction tasks (tasks DR and CR). We used three
system components for the domain adaptation: (1)
assigning more weight to target-domain training
data, (2) introduction of a UNK (unknown) to-
ken to model out-of-vocabulary words, and (3) ex-
ploitation of relational properties of temporality
during prediction.

In Section 2, we provide a detailed description
of our full system, and in Section 3 we discuss the
results from our submissions.

2 Our System

Our system consist of three main components (1)
preprocessing, (2) entity detection, and (3) rela-
tion extraction. In Figure 1, we show a schematic
overview of our system.

2.1 Preprocessing
The corpus used in Clinical TempEval 2017 is the
THYME corpus (Styler IV et al., 2014). For the
unsupervised domain adaptation phase (Phase I),
we use all colon cancer sections for training. For
the supervised domain adaptation (Phase II) par-
ticipants also received a small training section in
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Figure 1: Schematic overview of our system. Components we expect to help domain adaptation are
dashed.

the brain cancer domain. Some statistics about the
dataset can be found in Table 1.

Table 1: Dataset statistics for the THYME sec-
tions used in our experiments.

Section Documents

Training Colon Cancer 591
Training Brain Cancer 30
Test Brain Cancer 148

Our first simple method for adapting to a new
domain, when given target-domain training data
(Phase II), is to assign more weight to the target-
domain data at training time (Jiang and Zhai,
2007). In our submissions we assigned a 10 times
higher weight to the target-domain training data
compared to the colon cancer training data.

In all experiments, we preprocess the text by
using a very straightforward tokenization proce-
dure considering punctuation1 or newline tokens
as individual tokens, and splitting on spaces. We
also employ lowercasing, and conflate all digits to
a single representation. An example would be:

October 20, 1991 ⇒ october 55 , 5555

For our part-of-speech features, we rely on the
Stanford POS Tagger (Toutanova et al., 2003),
with the English bidirectional tagger model. We
also take the transitive closure of the CONTAINS
relation on the training data, as this has shown
to improve results in existing work (Mani et al.,
2006).

1, ./\"’=+-;:()!?<>%&$*|[]{}

Our second domain adaptation modification in-
volves the introduction of an unknown word to-
ken (UNK) to the input vocabulary of the extrac-
tion models. This is a widely used technique in
statistical language modeling to account for out-
of-vocabulary (OOV) words. In a language mod-
eling setting, we can expect that the proportion of
OOV words in the test set can be modeled by using
the proportion of one-time-occurring words from
the training set, by Good Turing estimation (Gale
and Sampson, 1995). In our system, we train the
weights for the UNK token by replacing all tokens
that occur only once in the training data by the
UNK token. At prediction time we simply replace
all words that are OOV by the UNK token. We
expect this technique to be effective for domain
adaptation as new words can be a serious problem
when crossing domains.

2.2 Entity Detection

For all span and attribute tasks we employ linear
SVM classifiers2. We only resort to token and
POS features, and use the same features for span
detection as for attribute detection. More elaborate
feature descriptions are shown in Table 2. We con-
sider all single tokens as EVENT candidates, and
all token {1,2,3,4,5,6}-grams as TIMEX3 candi-
dates (upper bound 6 is based on tuning on the
colon cancer training data).

2.3 Relation Extraction

For relation extraction we rely on the lin-
ear document-level structured perceptron by

2Trained using LIBLINEAR(Fan et al., 2008) with regu-
larization constant C=1.0 (tuned on the colon cancer section
of the training data from {0.1, 1.0, 10})
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Table 2: Features of the local feature functions of each subtask: φcr for CR, φdr for DR, φe∗ for ES and
EA, and φt∗ for TS and TA.

Features φdr φcr φe∗ φt∗

Strings for tokens and POS of each entity X X X X
Strings for tokens and POS in a window of size {3, 5}, left and right of each entity X X X X
Booleans for entity attributes (event polarity, event modality, event degree, and type) X X
Strings for tokens and POS of the closest verb X
Strings for tokens and POS of the closest left and right entity X
Strings for token {1, 2, 3}-grams and POS {1, 2, 3}-grams in-between the entities X
Booleans on if the first argument occurs before the second (w.r.t. word order) X

Table 3: Global DR (document-level) features.

Feature Description

Φsdr Bigram and trigram counts of subsequent
DCTR-labels in the document

Leeuwenberg and Moens (2017)3. Their model
employs a structured learning paradigm, assigning
a score S to each label assignment. Prediction cor-
responds to finding the label assignment with the
highest score. The score for a document-level la-
bel assignment is constructed by joining all local
features (shown in Table 2) within a document for
both tasks (DR and CR), together with a global
DR feature shown in Table 3, resulting in a joint
feature vector Φ(X,Y ).

The joint features Φ(X,Y ) are assigned a
weight vector λ, resulting in the linear scoring
function in Equation 1.

S(X,Y ) = λΦ(X,Y ) (1)

The weight vector λ is trained using the structured
perceptron algorithm (Collins, 2002), with averag-
ing (Freund and Schapire, 1999).

At prediction time integer linear programming
(ILP) is used to find the best label assignment
Y ∗, as shown in 2, using the Gurobi ILP Solver
(Gurobi Optimization, 2015).

Y ∗ = arg max
Y

S(X,Y ) (2)

We also experimented with the constraints on
the output labeling formulated by Leeuwenberg
and Moens (2017). The constraints enforce the
model to output labeling to be temporally con-
sistent, by enforcing relational properties onto the
predictions. We only chose the properties relevant

3Using the code at https://github.com/tuur/SPTempRels

for the CR and DR subtasks, which are transitivity
of containment, but also consistency between con-
tainment and the document-creation time relations
of the events. The relational properties that we en-
force as constraints during prediction are captured
in the following rules (condition above, and con-
clusion below the horizontal line):

contains(x, y) ∧ contains(y, z)
contains(x, z)

(3)

contains(x, y) ∧ before(x, doctime)
before(y, doctime)

(4)

contains(x, y) ∧ after(x, doctime)
after(y, doctime)

(5)

Our hypothesis is that these constraints can
help with assigning labels to unfamiliar input (e.g.
from the target-domain), by ensuring that local as-
signments are consistent with surrounding labels.

3 Experiments and Results

We conducted a number of experiments with our
system to test the effectiveness of the different sys-
tem components4. We submitted in phase I, and in
phase II. In Phase I, we used our system as shown
in Figure 1, only with the UNK introduction, so
without increased weight for target-domain train-
ing data (as there is none in Phase I), and without
constraints. In Phase II, our system includes the
full system, with all proposed components for do-
main adaptation.

When we look at the results of Phase I, in Fig-
ure 2, we can see that our system performs above
average on all tasks, and for both attribute iden-
tification tasks, it performs best (for EA there is
another system with best performance).

If we look at the results of Phase II, in Figure
2, our system again performs above average in all

4Code at https://github.com/tuur/ClinicalTempEval2017
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Figure 2: Results from Phase I (left) and Phase II (right): We compare our submission (indicated by *)
to the best performing system, and to the average score of all participating systems in each task. Out of
competition, an ablation of each modification is also evaluated (¬ indicates absence of a component).

cases. However, it seems our system does not lie
as close to the best system as in Phase I, suggest-
ing that we could have better exploited the target-
domain training data.

When looking at the ablation of the system
components in Figure 2, we can see that us-
ing the UNK modification (comparing Full with
Full¬unk), decreases performance for the ES, EA
and the DR subtask. Furthermore, employing tem-
poral constraints (C) appears to have a slightly
negative influence in Phase I for DR, and little in-
fluence in Phase II.

The effect of adding more weight to target-
domain training data (10TD) is mixed, leaning to-
wards a negative influence. For DR performance
increased by 1 point (because of increase in preci-
sion). However, for CR, TS, TA and EA it seems
to have a negative effect, for various reasons. For
example, for CR mostly due to a big decrease in
recall, but for TS due to a big decrease in precision

(hardly any difference in recall). This shows that
the effectiveness of weighting the target-domain
training data is highly task-dependent.

An interesting observation is that there is hardly
improvement in CR performance in Phase II com-
pared to Phase I (the best system score is even
lower). This suggests that domain-adaptation for
CR is more challenging than the other subtasks.

4 Conclusions

We described the KULeuven-LIIR system at Clin-
ical TempEval 2017, for all six subtasks. Our
system exploits SVM for entity detection and a
document-level structured perceptron for relation
extraction. Our system performed above average
for all subtasks in both phases. For future research
it would be interesting to analyze the errors that
were made by the system, and explore methods
to better exploit small amounts of target-domain
training data, or unlabeled target-domain data.
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