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Abstract 
 

1  Introduction  

Sentiment analysis is extracting subjective 

information from source materials, via natural 

language processing, computational linguistics, 

text mining and machine learning. 

Classification of users’ reviews about a 

concept or political view may bring different 

opportunities including customer satisfaction 

rating, making right recommendations to right 

target, categorization of users etc. Sentiment 

Analysis is often referred to as subjectivity 

analysis, opinion mining and appraisal 

extraction with some connections to affective 

computing.  Sometimes whole documents are 

studied as a sentiment unit (Turney and 

Littman, 2003), but it’s generally agreed that 

sentiment resides in smaller linguistic units 

(Pang and Lee, 2008).  

This paper describes our approach for 

SemEval-2017 Task 4: Sentiment Analysis in 

Twitter. We have participated in Subtask A: 

Message Polarity Classification subtask. We 

have developed two systems. The first system  

uses word embeddings for feature 

representation and Support Vector Machine 

(SVM), Random Forest (RF)  and Naive Bayes 

(NB) algorithms for classification Twitter 

messages into negative, neutral and positive 

polarity. The second system is based on Long 

Short Term Memory Recurrent Neural 

Networks (LSTM) and uses word indexes as 

sequence of inputs for feature representation.  

The remainder of this article is structured as 

follows: Section 2 contains information about 

the system description  and Section 3 explains  

methods, models, tools and software packages 

used in this work.  Test cases and datasets  are 

explained in Section 4. Results are given in 

Section 5 with discussions. Finally, section 6  

summarizes the conclusions and future work. 
 

2  System Description  

   We have developed two independent 

systems. The first system is word embedding 

centric and described in subsection 2.1. The 

second is LSTM based and described in 

subsection 2.2. Further details about both 

systems are given in Section 3.   

2.1 Word Embedding based System 

Description 

   In word embedding centric system approach, 

each word in a tweet is represented with a 

vector. Tweets consist of words and vectorial 

values of words (word vectors) are used to 

represent tweets as vectorial values.  Word 

Embedding system framework is shown Figure 

1. Two methods are used to obtain word 

vectors in this work. The first method is based 

on generating word vectors via constructing a 

word2vec model from semeval corpus as 

depicted in Figure 1 steps 1 and 2. The second 

This paper describes our approach for 

SemEval-2017 Task 4: Sentiment Analysis in 

Twitter. We have participated in Subtask A: 

Message Polarity Classification subtask and  

developed two systems. The first system  

uses word embeddings for feature 

representation and Support Vector Machine, 

Random Forest and Naive Bayes algorithms 

for the classification of Twitter messages into 

negative, neutral and positive polarity. The 

second system is based on Long Short Term 

Memory Recurrent Neural Networks and 

uses word indexes as sequence of inputs for 

feature representation.  
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method is based on Google News pre-trained 

word vectors model (step 3). 

Generate word2vec 
model 
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(2)

Word vectors

(1)

Vectorize tweets in the 
dataset

Vectorize each one of 
the tweets in the 

dataset using the word 
vectors

Dataset

Tweet 
vectors

Train and test a model
Train a classifier with 

train data and test the 
classifier with test data

(4)

(5)

(6)

(7)

(8)

Results
(9)

Use Google News 
pre-trained word 

vectors model

(3)

Figure 1: General framework of the system 

 

      In the first method, a word2vec model is 

construted by using the entire semeval tweet 

corpus and a vector space (word2vec model) 

has been created. This model contains vector 

values for all unique words in the corpus. 

Words which have similar contexts are 

positioned closer on this space. The parameters 

used in training word2vec model effect the 

performance of the whole framework. 

Therefore it is important to find optimal 

parameter values. This work is focused on the 

parameter named feature vector dimension size 

and its impact on the general performance. 

This parameter determines the dimensionality 

of the word vectors, which are generated via 

the word2vec model. 

   The second method is based on Google News 

pre-trained word vectors model. This method  

uses the Google News pre-trained word vectors 

model to obtain word vectors as shown in 

Figure 1 step 3. The Google news pre-trained 

model is a dictionary which contains word and 

vectorial value pairs, and it is generated via a 

word2vec model trained on the Google News 

text corpus.  

    Next stage includes using the obtained word 

vectors to vectorize tweets in the dataset which 

contains both training data and test data (steps 

5 and 6). This stage includes also the 

preprocessing of the tweets, e.g. deleting http 

links and twitter user names  included in the 

tweets, deleting the duplicate tweets which 

occur multiple times on the dataset etc. Later, 

preprocessed and formatted tweets are iterated 

to generate a tweet vector for each tweets by 

using the words they contained. Therefore, 

inputs of this stage are the dataset and the 

model which includes word vectors, while its 

output is a set containing tweet vectors, both 

for the train and the test data. 

   Outputted tweet vectors are in a numerical 

format which can be given as an input to 

multiple machine learning algorithms with the 

purpose of classifying them into categories or 

testing an existing model (step 8). At this 

stage, each tweet in the dataset is represented 

as a vector with multiple dimensions (step 7). 

It is possible to train a new classifier model or 

load a pre-trained and saved model. SVM, RF, 

and NB classifier models are trained in this 

work. Tweets are categorized into three classes 

which are negative, neutral and positive (step 

9). 

2.2 LSTM Based System Description  

   The pipeline of the second system consists of 

many steps : reading Tweets from Semeval 

datasets, preprocessing Tweets, representing 

each word with an index, then representing 

each Tweet with a set of word index sequence 

and training a LSTM classifier with sequence 

index array. The Flowchart of this system  is 

shown in Figure 2.  

Pre-processingDataset Indexing LSTM

 
Figure 2: LSTM based  system pipeline  

3 Methods and Tools  

3.1 Word Embedding  

   Word embedding stands for a set of natural 

language processing methods, where words or 

phrases from the vocabulary are mapped to 

vectorial values of real numbers (Bengio et 

al.,2003). Embeddings have been shown to 

boost the performance of natural language 

processing tasks such as sentiment analysis 
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(Socher et al., 2013). Vector representations of 

words can be used in vector operations like  

addition and subtraction. Vectors generated by 

word embedding can be used to represent 

sentences, tweets or whole documents as 

vectorial values. There are multiple methods to 

generate sentence vectors using the word 

vectors, a modified version of the sum 

representation method which is proposed by 

Blacoe is used in this work (Blacoe et al., 

2012). 

   The sum representation model, in its original 

state, is generated via summing the vectorial 

embeddings of words which a sentence 

contains. The related equations are given 

below with E.1, E.2 and E.3: 

𝑇𝑤𝑡: 𝑡𝑤𝑒𝑒𝑡, 𝑡𝑤𝑡𝑉𝑒𝑐: 𝑡𝑤𝑒𝑒𝑡 𝑣𝑒𝑐𝑡𝑜𝑟, 
𝑤: 𝑤𝑜𝑟𝑑, 𝑤𝑑𝑉𝑒𝑐: 𝑤𝑜𝑟𝑑 𝑣𝑒𝑐𝑡𝑜𝑟, 
𝑛: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑜𝑟𝑑𝑠 𝑖𝑛 𝑡𝑤𝑒𝑒𝑡, 

𝑇𝑤𝑡𝑖 = (𝑤1
(𝑖), … , 𝑤𝑛

(𝑖))  ∶ words in tweet 

 

𝑡𝑤𝑡𝑉𝑒𝑐[𝑗] =  ∑ 𝑤𝑑𝑉𝑒𝑐𝑤𝑘

𝑘=1,…,𝑛𝑖

[𝑗] (E.1) 

 

A modified version is used in this work. Derived 

version considers the number of words. The related 

equations  are given below: 

 

𝑇𝑤𝑡𝑖 = (𝑤1
(𝑖), … , 𝑤𝑛

(𝑖)) (E.2) 

𝑡𝑤𝑡𝑉𝑒𝑐[𝑗] =  
∑ 𝑤𝑑𝑉𝑒𝑐𝑤𝑘𝑘=1,…,𝑛𝑖

[𝑗]

𝑛
 (E.3) 

 

3.2 Classification Models 

3.2.1 Support Vector Machine 

   SVM finds a hyper plane seperating tweet 

vectors according to their classes while making 

the margin as large as possible. After training, 

it classifies test records according to which 

side of the hyperplane their positions are 

(Fradkin et al, 2000). We have used SVM with 

the following parameters = {Kernel = 

PolyKernel, batchSize=100} 
 

3.2.2 Random Forest 

   Random forests, first proposed by Ho (Ho, 

1995) and later improved by Breiman 

(Breiman, 2001), operate by generating 

multiple decision trees and generate the final 

decision by evaluating the results of these 

individual trees. The mathematical expression 

is given in equation (E.4). We have used 

Random Forest with the following parameters 

={bagSizePercent =100, batchSize=100}  

{(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑛    : 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑒𝑡, 

𝑦 ∗    : 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠, 

𝑥′    ∶ 𝑛𝑒𝑤 𝑝𝑜𝑖𝑛𝑡𝑠 𝑡𝑜 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦, 

𝑊(𝑥𝑖 , 𝑥′)𝑦𝑖  ∶ 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑖′𝑡ℎ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 

𝑊    ∶ 𝑤𝑒𝑖𝑔ℎ𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 

  

𝑦∗ =  
1

𝑚
∑ ∑ 𝑊𝑗(𝑥𝑖 , 𝑥′)𝑦𝑖

𝑛

𝑖=1

𝑚

𝑗=1

= ∑ (
1

𝑚
∑ 𝑊𝑗(𝑥𝑖 , 𝑥′)

𝑚

𝑗=1

) 𝑦𝑖

𝑛

𝑖=1

 

(E.4) 

 

3.2.3 Naïve Bayes 

   Naïve-Bayes is a probabilistic classifier 

based on Bayes’ theorem, based on 

independence of features (John et al, 1995). 

Mathematical expression is given in equation 

(E.5). 

 
𝑐 ∗∶ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑐𝑙𝑎𝑠𝑠 𝑥 ∶ 𝑠𝑎𝑚𝑝𝑙𝑒 

ℎ𝑁𝐵: 𝑛𝑎ï𝑣𝑒 𝑏𝑎𝑦𝑒𝑠 𝑓𝑢𝑛𝑐  

𝑐∗ = ℎ𝑁𝐵(𝑥) 

 
 

    = 𝑎𝑟𝑔𝑚𝑎𝑥𝑗=1…𝑚𝑃(𝑐𝑗) ∏ 𝑃(𝑋𝑖 = 𝑥𝑖|𝑐𝑗)  (E.5) 

 

 

3.2.4 Long Short Term Memory 

Recurrent Neural Nets 

    

   LSTM networks have similiar architecture to 

Recurrent Neural Nets (RNNs), except that 

they use  different functions and architecture to 

compute the hidden state. They were 

introduced by Hochreiter & Schmidhuber 

(1997) to avoid the long-term dependency 

problem and were refined and popularized by 

many people in next studies.  

    

    LSTMs have the form of a chain of 

repeating modules of a special kind of 

architecture.  The memory in LSTMs are 

called cells. Internally, these cells decide what 

to keep in and what to erase from memory. 

They then combine the previous state output, 

the current memory and the input to produce 

current state output. It turns out that these 

types of units are very efficient at capturing 
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long-term dependencies. Before feeding the 

LSTM Network,  preprocessing and indexing 

steps have been applied as shown in Figure 2. 
 

                          Preprocessing 

 

   We have pre-processed the dataset before we 

input it into the LSTM classifier. We used 

Deeplearning4J library1 to remove 

punctuations from tweets, and convert all 

content into lowercase. 

 

Indexing 

 

   Indexing is iterating over all tweets 

contained in the dataset to determine words 

used in them and enumerate them. The index 

values of words are combined sequentially so 

that each tweet is presented as a sequence of 

word index numbers.  

    

   The program iterates through the dataset, 

enumarates each word which has not been 

indexed before and generates a dictionary that 

contains word – index pairs. As a result, each 

tweet is represented as set of sequential 

indexes, each representation contains same 

number of values as the tweet word count. 

    

   Indexed tweets are in sequential structure 

and they can be given as input to neural 

networks directly. LSTM networks make it 

possible to take the data sequentially and take 

in consideration the order of words in the 

training and classifying stages. Therefore, we 

used LSTM upon indexed tweets. We have 

used categorical crossentropy  as loss function 

and softmax function. Our model parameters 

are given in Table 1 and the model is shown in 

Figure 3. 

 

3.3 Used Tools and Software Packages  

 

3.3.1  Deeplearning4J 

 
   Deeplearning4j  is a commercial-grade, 

open-source, distributed deep-learning library 

written for Java and Scala1.  There are multiple 

parameters to adjust when training a deep-

learning network. Deeplearning4j is used for 

generating a vectorized format of the Semeval 

dataset using the Google News trained word 

vectors model. 

 

 
              Table 1: Parameters for classifier stage 

max_features 
86000 : Maximum integer value of 
indexed  dataset. 

maxlen 
25 : Indexed tweets padded into this 

value. 

batch_size 32  

model Sequential(): sequential model 

Embedding 

max_features : Input dimension, size 

of the vocabulary. 
128 : Dimension of the dense 

embedding. 

dropout=0.2 

LSTM 

128 : dimension of the internal 

projections and the final output 

dropout_W=0.2 : Fraction of the 
input units to drop for input gates. 

dropout_U=0.2 : Fraction of the 

input units to drop for recurrent 

connections. 

Dense 3 : Output dimensions. 

Activation 
‘softmax’ : Normalized exponential 

function  

loss ‘sparse_categorical_crossentropy’ :. 

optimizer ‘adam’ : Adam optimizer. 

 

 
Figure 3: Plotted diagram of the LSTM classifier 

 

3.3.2 Keras 

    Keras2, developed by Chollet et al., is a 

high-level, open-source neural networks 

library written in Python (Chollet, 2015). It can 

use Theano or TensorFlow libraries as its 

backend. It is focused on fast experimentation 

with data. It includes implementations of 

commonly used neural network blocks such as 

layers, activation functions, etc., to enable its 

users to implement various neural networks in 

their work. We have used Keras library to 

develop LSTM  network for tweet polarity 

classification.  

 
1 Deeplearning4j, http://deeplearning4j.org (Referenced Nov 

2016) 
2 Keras, https://keras.io/ (Referenced February 2017) 
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3.3.3 Word2vec 

   Word2vec3, is a group of models used to 

generate word embeddings (Mikalov et al., 

2013). Word2vec models are based on two-

layer neural networks which takes a large 

corpus of text as its input and produces a 

vector space of several hundred dimensions. 

Each unique word in the corpus is assigned a 

corresponding vector in this space. 

Embeddings are used to represent words as 

vectors which are closer to each other when 

words have similar meanings and far apart 

when they do not. Therefore, the system can 

generalize similar words.  

   Representing words as vectorial values 

makes it possible to treat words as vectors and 

use vectorial operations on them. A properly 

trained Word2vec model can calculate an 

operation like [king] - [man] + [woman] and 

give the approximate result of [queen].  

   We have generated word2vec models in our 

tests from semeval datasets.  We have run 

word2vec models with the parameters shown 

in Table 2.  

Table 2: Parameters for word2vec generation stage 

minWordFreq 
MIN_WORD_FREQ = 5 : Minimal 

element frequency for elements 

found in the training corpus. 

iterations 
NETWORK_ITERATION = 25/50 

:How many iterations should be 

done over batched sequences. 

layerSize 
FEATURE_VECTOR_DIMENSIO
N_SIZE = 300/600/900 : Number 

of dimensions for outcome vectors. 

seed 
RANDOM_SEED = 42 : Sets seed 
for random numbers generator. 

windowSize 
WINDOW_SIZE = 25 : Sets 

window size for skip-Gram  

3.3.4  Google News Trained Word2vec 

Model 

   Google news trained word vectors compose a 

word vector model which has been pre-trained 

on part of Google News corpus that includes 

100 billion words. The model contains 300-

dimensional vectors for 3 million words and 

phrases4. It is 3.39 GB in size which is 

observable from the equality, 3 million words * 

300 features * 4bytes/feature = ~3.39GB. 

Some stop words like “a”, “and”, “of” are 

excluded, but others like “the”, “also”, 

“should” are included. It also includes 

misspellings of words. For example, it includes 

both “mispelled” and “misspelled”.  

We have used Google News pre-trained word 

vectors to generate vector representations of 

tweets with FEATURE VECTOR DIMENSION SIZE 

equals to 300 configuration.   

4 Dataset and Test Cases  

4.1  Dataset 
   SemEval-2016 Task4 Subtask A’s twitter 

train and test datasets have been used in this 

work5. The given datasets are dynamic which 

don’t include the tweets that are deleted by 

their authors. Thus, the available data changes 

dynamically as users make their tweets 

available or deleted. We have used all previous 

years’ tweets to construct the word embedding 

and classification models. 

4.2 Test Cases 

   We have tested many configurations to find 

the best configuration to achieve the highest 

accuracy rate. We have conducted five main 

test cases. In the first,  second and third test 

cases we have used word2vec model that has 

been constructed with previous years’ semeval 

tweet datasets.    

   In Test 01, Test 02 and Test 03 we have 

trained word2vec model with SemEval Tweet 

dataset corpus. Also we have used different 

vector dimension sizes including 300, 600 and 

900.  In test case 04 we have used google news 

based(trained) word vectors. Also in each test 

case classification has been done with SVM, 

RF and NB. Test 05 id done with LSTM 

classifier on SemEval dataset. The test cases 

are listed in Table 3.  

Table 3: Results obtained from tests 

Test 

No. 

Word 

Vectors 
Dimension Size 

S

V
M 

R

F 

N

B 

 

L

S
T

M 

01 SemEval 600 √ √ √  

02 SemEval 300 √ √ √  

03 SemEval 900 √ √ √  

04 

Google 

News 
trained  

300 

√ √ √  

05 
N/A 

(index) 
30 

   √ 

 
3 Word2vec https://deeplearning4j.org/word2vec.html 
4 Google News trained word vectors model, 

https://code.google.com/archive/p/word2vec/  

5 SemEval Dataset, 

alt.qcri.org/semeval2017/task4/index.php?id=data-and-tools
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5 Results and Discussion 

5.1 Tests with Word Embedding and 

SVM, TF, NB  

   Purpose of the first three tests was observing 

the parameter feature vector dimension size’s 

and classifier type impact on the general 

performance. We have used SemEval training 

and test datasets pertaining to 2013, 2014, 

2015 and 2016 years to construct SemEval 

word2vec model. The tests have been done 

using this SemEval cumulative dataset. Results 

obtained from the classification tests are shown 

in Table 4. 

Table 4:  Accuracy / Results obtained from tests 

Test 

No. 

Word 

Vectors 

Dim.

Size 

SVM 

% 

RF 

% 

NB 

% 

01 Semeval 600 58.3  54.4  52.3  

02 Semeval 300 57.3  45.7  51.8  

03 Semeval 900 58.7  53.7  51.7  

04 

Google 
News 

trained 

word 
vectors 

300 62.8  57.2  53.1  

 

   For SVM, the difference is minimal, but the 

value 900 worked best. For RF, the value 300 

drastically reduced the overall performance 

while the value 600 worked best. NB 

accuracies are close to each other but it is 

observed that this method has the lowest 

overall accuracy values among three. With a 

word2vec model which is trained on the same 

dataset with the classifier, SVM method 

obtained the best results. 

   The fourth test has a different approach, 

which is not generating a word2vec model but 

obtaining the Google News pre-trained word 

vectors instead. This model has the standard 

value 300 for the feature vector dimension size 

and resulted in better accuracies for each one 

of the classification methods. It is observed 

that the model has positive impact on the 

overall system performance. 

 

5.2 Tests with LSTM  

   Keras library is used to train and test LSTM 

Recurent Neural Net. Test 05 id done with 

LSTM classifier on SemEval cumulative 

dataset and 62.6% accuracy rate has been 

achieved. 

5.3 Results over the SemEval 2017 Test 

Set 

  The test dataset  is used to test the system’s 

capability of predicting categories for 

unlabeled tweet data, and give them as an 

output.  The original test dataset includes 

12379 records, 95 of which are confirmed to 

be duplicates. These duplicate records are 

deleted from the dataset. Remaining 12284 

records are evaluated in this test. 

    Preprocessing stage strips all punctuation 

from the dataset and converts all tweets into 

lower case. This means, twitter user names, 

e.g. @username, are stripped from their ‘@’ 

symbol, but the user names themselves are 

preserved.  

   In SemEval 2017, the results are given with 

three scores: average 𝐹1 (𝐹1 averaged across 

the positives and the negatives), average R        

(recall averaged across the three classes) and 

accuracy. The 𝐹1 score measures test accuracy 

by considering precision and recall where a 𝐹1 

score reaches its worst value at 0 and best 

value at 1.  

   Using SemEval 2017 test data we have 

achieved  the following scores :   Average 𝐹1 = 

0.587, Average R = 0.605 and Accuracy = 

0.603.  

 

6 Conclusion and Future Work 

    

   The best result is obtained via support vector 

machine classifier, when Google News pre-

trained word vectors are used, which is 62.8% 

accuracy in average when applied to previous 

years’ training and test data.   

   On the  Semeval 2017 Test Dataset by using 

same Word embedding + SVM pipeline ( the 

first system), we have obtained 60.3% 

accuracy rate with the following scores scores :   

Average 𝐹1 = 0.587, Average R = 0.605 and 

Accuracy = 0.603. 

   There may be many approches to create a 

better system. One possible way to further 

improve our system could be to transfer word 

embedding features to other classifiers 

(Recurrent Tensor Neural Networks, 

combining LSTM and Convolutional Neural 

Networks etc. ). Another possible line of the 

future research is the combination of hand 

crafted features (bag of words, n-grams, 

lexicons) with word embedding features.  
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