
Proceedings of the 11th International Workshop on Semantic Evaluations (SemEval-2017), pages 675–682,
Vancouver, Canada, August 3 - 4, 2017. c©2017 Association for Computational Linguistics

Tweester at SemEval-2017 Task 4: Fusion of Semantic-Affective and
pairwise classification models for sentiment analysis in Twitter

Athanasia Kolovou 2,3, Filippos Kokkinos 1, Aris Fergadis 1,3, Pinelopi Papalampidi 1

Elias Iosif 1,3, Nikolaos Malandrakis 4, Elisavet Palogiannidi 1, Harris Papageorgiou 3

Shrikanth Narayanan 4, Alexandros Potamianos 1,3

1School of ECE, National Technical University of Athens, Zografou 15780, Athens, Greece
2 Department of Informatics, University of Athens, Athens, Greece

3 “Athena” Research and Innovation Center, Maroussi 15125, Athens, Greece
4 Signal Analysis and Interpretation Laboratory (SAIL), USC, Los Angeles, CA 90089, USA

akolovou@di.uoa.gr, el11142@mail.ntua.gr
fergadis@central.ntua.gr, el12003@central.ntua.gr

iosife@central.ntua.gr, malandra@usc.edu
epalogiannidi@gmail.com, xaris@ilsp.athena-innovation.gr

shri@sipi.usc.edu, potam@central.ntua.gr
Abstract

In this paper, we describe our submission
to SemEval2017 Task 4: Sentiment Anal-
ysis in Twitter. Specifically the proposed
system participated both to tweet polar-
ity classification (two-, three- and five
class) and tweet quantification (two and
five-class) tasks. The submitted system is
based on “Tweester” (Palogiannidi et al.,
2016) that participated in last year’s Sen-
timent analysis in Twitter Tasks A and
B. Specifically it comprises of multiple
independent models such as neural net-
works, semantic-affective models and af-
fective models inspired by topic modeling
that are combined in a late fusion scheme.

1 Introduction

Tweets are short length pieces of text, usually
written in informal style that contain abbrevia-
tions, misspellings and creative syntax (like emoti-
cons, hashtags etc). The challenging nature of
sentiment analysis in Twitter motivated the or-
ganization of numerous tasks within the Seman-
tics Evaluation (SemEval) workshop. In this pa-
per, we show how our sentiment analysis frame-
work called “Tweester” (winner of Subtask B in
SemEval-2016 (Palogiannidi et al., 2016)), can
be applied to all subtasks, namely Subtask A
(message polarity classification), Subtask B (tweet
classification according to a two-point scale), Sub-
task C (sentiment conveyed by a tweet towards
the topic on a five-point scale), Subtask D (esti-
mate the distribution of the tweets across a two-
point scale), Subtask E (estimate the distribution

of the tweets across a five-point scale ). The sys-
tem achieved high performance ranking 5th, 3rd,
4th, 5th and 8th for Subtasks A, B, C, D, and E,
respectively (S.Rosenthal et al., 2017). In Section
2 we provide more details on the individual sys-
tems as well as the fusion scheme. Experimental
procedure is described in Section 3 and some con-
cluding remarks as well as an outlook on future
work are presented in Section 4.

2 System Description

The submitted system is based on the fusion of
several systems. Specifically the system con-
sists of: 1) the semantic-affective system (sub-
mitted to the SemEval 2016 Task 4 (Palogiannidi
et al., 2016)) that incorporates affective, semantic-
similarity, sarcasm/irony and topic modeling fea-
tures, 2) a single and a two-step convolutional neu-
ral network, 3) a system based on word embed-
dings, 4) a “stacking” based system that trans-
forms the 3-class polarity problem of Subtask
A, into 2-class binary problems and finally 5)
the open-source system submitted to the SemEval
2015 Task 10 (Rosenthal et al., 2015a).

2.1 Preprocessing

We hypothesize that hashtags are able to express
user’s sentiment with regard to some topic or
events (e.g., “Jazz all day #lovemusic”). Follow-
ing this assumption, hashtag expansion into word
strings (Palogiannidi et al., 2016) was performed
using the Viterbi algorithm (Forney, 1973). The
absolute and relative frequencies of hashtags to be
expanded are used as features, as well as the bi-
nary indicators that a tweet contains hashtags that
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require expansion. POS-tagging / Tokenization
is performed using the ARK NLP tweeter tag-
ger (Owoputi et al., 2013). The Gensim model
(Řehůřek and Sojka, 2010) is used which can au-
tomatically detect common multi-word expres-
sions (MWE) from a stream of sentences. After
we detect MWE, we select only the ones that con-
sist up to two words, which we treat as a single
token. Negations are usually expressions that are
used to alter the sentiment orientations. We claim
that not all parts of the tweet convey equally im-
portant information and some parts, like negated
parts or the last words of a tweet may express an
opposite meaning of what is literally said. The un-
derlying intuition here is the cognitive dissonance
phenomenon that is associated with the existence
of ironic content, sarcasm and humour (Reyes and
Rosso, 2014). Based on this claim, we detect the
negation part of a tweet using the list proposed by
(Potts, 2011). Specifically, when a negation token
is detected, the tokens that follow are marked as
negated until a punctuation mark is reached. Then,
we extract features in the negated part. We also
apply context windows on each tweet, in order
to keep selected words. “Prefix” context windows
are the first two and three tokens of the tweet, how-
ever , “suffix” windows change analogously to the
length of the tweet, selecting the 20%, 50% and
70% of the last tokens.

2.2 Semantic-Affective system

The Semantic-Affective based system is the core
model of “Tweester” which is based on previous
work by (Malandrakis et al., 2014). The major-
ity of the features used are affective ratings that
have been estimated by semantic affective mod-
els, however, numerous non-affective or semantic
features are also used.

2.2.1 Affective lexica
Using the semantic affective model described in
(1) we created affective lexica by estimating con-
tinuous (in [-1,1]) ratings for unknown words.
This model that was first proposed by (Malan-
drakis et al., 2013) and enhanced by (Palogiannidi
et al., 2015) relies on the assumption that “seman-
tic similarity implies affective similarity”. First,
a semantic model is built and then affective rat-
ings are estimated for unknown tokens. This ap-
proach uses a set of words with known affective
ratings, usually referred as seed words, as a start-
ing point. The English manual annotated affective

lexicon ANEW (Bradley and Lang, 1999) is used
for selecting the seed words. The model is applica-
ble both to single words or multi-word expression
tokens:

υ̂(w) = α0 +
M∑
i=1

αiυ(ti)S(ti, w), (1)

where t1...tM are the seed words, υ(ti) is the af-
fective rating for seed word ti, αi is a trainable
weight corresponding to seed ti and S(·) is the se-
mantic similarity metric between two tokens. The
semantic model is built as shown in (Palogiannidi
et al., 2015) using word-level contextual feature
vectors and adopting a scheme based on mutual
information for feature weighting. From the af-
fective ratings we retain only the polarity features
(instead of using additional affective dimensions,
namely arousal and dominance). Affective lex-
ica were created using a Twitter corpus, which we
call task-dependent corpus and a generic corpus,
which we call out-of-domain (see Section 3.1). In
an attempt to create task-dependent affective lex-
ica we use the out-of-domain corpus and follow
a domain adaptation technique. Specifically, we
build a language model using domain relevant sen-
tences, i.e., tweets. Then, we estimate the per-
plexity of each out-of-domain sentence in order
to evaluate its relevance to the language model.
In this context, instances that are lexically more
similar to the instances in the task-dependent cor-
pus will be assigned lower perplexity scores. We
create four adapted lexica selecting from the out-
of-domain corpus the top 10%, 30%, 50% and
70% of the most relevant sentences to the language
model.

Third party affective lexica are also used. Those
include AFFIN ((Nielsen, 2011), NRC and nrctag
(Mohammad et al., 2013)). Given the affective
ratings, the next step is combining them through
statistics. We use simple statistics grouped by part
of speech tags. Specifically we compute: length
(cardinality), min, max, max amplitude, sum, av-
erage, range (max minus min), standard devia-
tion and variance. The results are statistics like
“maximum valence among adjectives”, “mean va-
lence among proper nouns”, “number of verbs and
nouns”, etc. All features mentioned above are
not only extracted on the token-level, but also on
the prefix and suffix parts of each tweet and the
MWEs.
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2.2.2 Additional features

In addition to the affective features, we also in-
corporate morphology, character and word embed-
ding based features.

Character features include the frequencies of se-
lected characters like capitalized letters, punctua-
tion marks, emoticons and character repetition.

Word embeddings are utilized for the semantic
similarity estimation. They were derived using
word2vec (Mikolov et al., 2013b), representing
each word as a d-dimensional vector. For each
tweet the corresponding vectors of its constituent
words are averaged to get a sentence-level feature
vector.

As subjectivity features we use the absolute
and the relative frequencies of the strong pos-
itive/negative and weak positive/negative words
taken from a subjectivity lexicon (Wilson et al.,
2005).

The detection of irony in tweets is mainly consti-
tuted from the detection of disagreement between
what someone says and what he actually believes.
According to this assumption, features that mea-
sure the level of opposition between literal and in-
tended meanings in a tweet are extracted. Similar
to (Barbieri and Saggion, 2014), we extracted the
following features: i) frequency based which are
features that are derived from the mean frequency
of common and rare words in a tweet, as well
as the difference between them. Word frequen-
cies are indicated in the ANC Frequency Data cor-
pus (Ide and Macleod, 2001), ii) written-spoken
gap where we calculate the difference between the
number of words that are considered “formal” vs.
the “informal” ones in each tweet. Those words
are also identified in the ANC corpus, iii) senti-
ment distances for which we first apply a thresh-
old that separates words into positive and negative,
based on polarity ratings from the lexica we de-
scribe in Section 2.2.1. For each tweet we com-
pute: total sentiment range (average positive mi-
nus average negative), positive range (max pos-
itive minus tweet average), negative range (max
negative minus tweet average) and iv) following
the approach proposed by (Barbieri and Saggion,
2014), we use the same feature selection process
related to synonyms, since they may be high indi-
cators of irony.

A topic modeling method (described in Section
2.6), provides additional features to this system.

2.3 Convolutional Neural Network
In our framework we propose the combination of
two neural networks. Specifically, we develop a
deep Convolutional Neural Network (CNN) and
a two-step Convolutional Neural Network. The
neural network architecture is inspired by sentence
classification tasks (Severyn and Moschitti, 2015;
Kalchbrenner et al., 2014; Kim, 2014). Each tweet
is represented by a sentence matrix D that is cre-
ated as follows. First, each word is represented as
a d-dimensional vector using word2vec (Mikolov
et al., 2013b), and then, the word vectors are con-
catenated as follows:

D = W1⊕W2⊕W3⊕···⊕Wn., D ∈ IRd×n (2)

where ⊕ indicates the concatenation operation.
Each column i of D is a vector W ∈ IRd that
corresponds to the ith word of the tweet. This
way the sequence of the words in the tweet is
kept. In order to preserve the same length for all
tweets, zero padding is applied by concatenating
zero word vectors until the length n of the longest
tweet is reached. The size of D is d × n, where d
is the dimension of the word embedding and n is
the maximum number of words.

The matrix D is the input to the network, where
a convolution operation is performed between D
and a filter F ∈ IRd×m which is applied to a
window of m words to produce a new feature.
The result of the convolutional layer is a vector
c ∈ IRn−h+1 (Kim, 2014). The network uses
multiple m filters, with varying sliding windows
and generates multiple features that are aggre-
gated into a feature matrix C ∈ IRmx(n−h+1).
The filters are learned during the training phase
of the neural network (the exact parameter values
are presented in Table 3). These features are the
inputs to the next layer which selects the maxi-
mum value of each feature by applying a max-
over-time pooling operation (max-pooling layer)
(Collobert et al., 2011). Max pooling reduces the
dimensionality of the input feature matrix and al-
lows the “strongest” information to be considered
in the resulting feature representation. The out-
put pooled feature map matrix of this step has
the form: Cpooled ∈ IRm×n−h+1

s (Kalchbrenner
et al., 2014) where s is the length of each re-
gion. The next layer is a fully connected hid-
den layer that computes the following transforma-
tion: α(Whidden ∗ x + bhidden) as explained in
(Nair and Hinton, 2010) where α is the rectified
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linear activation function relu(x) = max(0, x)
, Whidden ∈ IRm×m is the weight matrix and
bhidden ∈ Rm is the bias. The output vector of this
layer, x ∈ Rm are the sentence embeddings for
each tweet. Finally we add a soft-max layer that
classifies the outputs of the hidden layer x ∈ Rm

to one of the possible classes.
Two-step CNN: In the case of 3-class problem
of Subtask A we propose an additional two-step
system. This process requires the re-annotation
of the train datasets as follows. We separate the
neutral tweets, while positive and negative tweets
are annotated as “emotional”. Then, we apply the
aforementioned CNN model architecture which is
trained on the re-annotated data. The output is pre-
dictions on neutral and “emotional” tweets. The
next step involves the classification of the tweets
that were found to belong to “emotional” cate-
gory, into positive and negative. This step requires
only the “emotional” tweets for training the CNN
model.

2.4 Word2vec
This system uses word embeddings to predict the
sentiment of each tweet in a supervised approach,
using a classifier which is trained with the avail-
able labeled data. The vector for each word is
a semantic description of how that word is used
in context, so words that are used similarly in
text will get similar vector representations. Mo-
tivated by this, we build this separate system that
relies exclusively on tweets’ semantic representa-
tion. Specifically the word embeddings of each
tweet word are first extracted. Then, the vectors of
each tweets’ constituent words are averaged and
form utterance-level vectors used for training the
classifier.

2.5 Stacking
The main idea of this technique is to reduce a
multi-class problem into binary 2-class problems
and train one separate classifier for each pair of
classes (Savicky and Fürnkranz, 2003). In the sec-
ond step, the predictions of the binary classifiers
are combined using a separate classifier. This pro-
cess is referred to as stacking (Fürnkranz, 2001).

2.6 Topic modeling
Here, we perform sentence-level adaptation from
the semantic space to the affective space. For the
adaptation of the semantic space of each tweet we
split a large Twitter corpus (see Section 3.1) in

topics using LDA (Blei et al., 2003). We create
a number of topics and an equal number of clus-
ters with the following procedure. For each tweet
we get the LDA posteriors which give the proba-
bilities by which the tweet belongs to certain top-
ics. The tweet is assigned to those clusters if the
probability is above a threshold. Each cluster con-
stitutes a sub-corpus for which a semantic model
is built using word embeddings as features. The
purpose of those steps is to calculate a new simi-
larity score between a lexical token tj and a seed
word wi using a semantic mixture of the above
mentioned models as follows:

S(tj , wi) =
∑T

n=1 p(n|s) · Sn(tj , wi)∑T
n=1 p(n|s)

, (3)

where s = {t0, t1, . . . , tj , . . . , tk} are the tweet’s
tokens, wi is the ith seed word, T is the number
of topics-clusters, p(n|s) is the posterior probabil-
ity for s to contain topic n and Sn(·) is the cosine
similarity between tj and wi, obtained from clus-
ter n. The similarities computed in (3) are used
in (1). This enables the computation of affective
scores for tweet tokens based on which the fol-
lowing statistics are computed: max, min, mean,
variance, standard deviation, range (max - min),
extremum (larger absolute value) and sum. We also
compute the same statistics for the following POS
tags of each tweet, N, O, S, ˆ, Z, L, V, A, R, !, us-
ing the ARK NLP tweeter tagger (Owoputi et al.,
2013) getting max score over all nouns, min score
over all nouns etc. Those values are normalized by
dividing with the corresponding score computed
over all tokens, e.g. the min score over all nouns
is divided by the min score over all tokens.

2.7 Webis
We also incorporated the Webis system (Büchner
and Stein, 2015), which is the ensemble of dif-
ferent subsystems (namely NRC, GUMLT, KlUE,
TeamX) that ranked at the top of SemEval 2013
and 2014 Sentiment Analysis tasks (Nakov et al.,
2013; Rosenthal et al., 2015b)

2.8 Fusion of systems
The last step of the “Tweester” framework is the
combination of all the aforementioned systems
that have been trained on different feature spaces.
Specifically, this step applies late fusion by aver-
aging the output posterior probabilities from each
classifier.
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3 Experimental procedure and results

3.1 Data

We train our systems using both general purpose
and Twitter data. The training set is composed
by the training, development and development-
time testing data of SemEval-2013 and SemEval-
2016, as described in Table 1. We also add to
the train set, the test data from SemEval-2015
and SemEval-2014. We omit the SemEval-2016
test data, which are kept for testing and experi-
menting with our models. For the procedure of
adaptive lexica creation we used a general pur-
pose corpus that contains 116M sentences that
was created by posing queries on a web search
engine and aggregating the resulting snippets of
web documents(Iosif et al., 2016). In addition, a
Twitter-specific dataset is created and consists of
300M tweets (T-300M). Finally the ANEW lexi-
con (Bradley and Lang, 1999) is used for selecting
the initial set of seed words of (1).

Training Set
Subtask A 28,061
Subtask B & D 6,680
Subtask C & E 9,070

Table 1: Number of tweets used for training.

3.2 Systems

The Semantic-Affective system (see Section 2.2)
is trained using the SemEval datasets of Table 1 for
each subtask. We perform feature selection on the
massive set of candidate features. Specifically, we
perform a forward stepwise feature selection us-
ing a correlation criterion (Hall, 1999) that extracts
the most informative features. For classification, a
Naive Bayes tree classifier is trained. Naive Bayes
trees proved superior to other types of trees during
our testing, presumably due to the smoothing of
observation distributions. This model is used for
Subtasks A,B and D combined with the other sys-
tems, however in Subtask C and E it is used as a
standalone system.

For the word2vec-based system (see Section
2.4) we trained a Random Forest classifier with
100 trees using the tweet-level vectors described in
Section 2.4. The word embeddings are initialized
using word2vec (Mikolov et al., 2013a,b) and are
trained using the T-300M corpus (see Section 3.1).
We apply a skip-gram model of window size 5

while the words with frequency less than 50 were
not taken into consideration. The dimensionality
of the word vectors used is d = 50. Words that
appear in the tweet but do not have a vector repre-
sentation, are initialized randomly from a uniform
distribution.

The stacking based system (see Section 2.5)
is used in Subtask A and requires that the train-
ing data is split into subsets using only exam-
ples from each of the two classes (i.e, positive-
negative, positive-neutral and negative-neutral).
We form tweet-level vectors (set to d=50), as in the
word2vec based system, for each of the aforemen-
tioned subsets. Then, we train separate Random
Forest classifiers with 100 trees, using the tweet-
level vectors. After the training phase, each clas-
sifier is tested not only on the provided test data
but also on the training data. The posterior proba-
bilities from this step constitute the features for the
classifier in the final step, which is a nearest neigh-
bor classifier (Savicky and Fürnkranz, 2003).

We run a series of experiments with the topic
modeling system (see Section 2.6) in which we
fine-tune the following parameters. Word2vec
parameters of topic clusters which are, size of
word vectors, max skip length between words and
the model’s architecture, i.e. Continuous Bag-
of-Words (CBOW) or skip-gram, the number of
topics to extract from the T-300M, the probabil-
ity threshold for grouping tweets into clusters (as
described in Section 2.6) and the number of seed
words to use from the ANEW lexicon in order
to estimate the affective scores, as described in
(1) and (3). Each experiment produces a differ-
ent feature set. In order to select the best set for
the semantic-affective based system, we evaluate
them against the SemEval labeled data using a
Naive Bayes tree classifier. The feature set that
gives the best performance is selected for each
subtask.

Parameters
Number of convolutional filters m = 200
Filter window size h [3,4,5]
Size of max-pooling interval width = 6, s = 2
Activation function relu
Adadelta parameters ε = 10−6 and

ρ = 0.95

Table 3: Summary of CNN parameters used.

For the CNN model we first run a distant-
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Tweester Systems
Subtask Perf. Rank NRC GUMLT KlUE TeamX Sem-Affect CNN 2step CNN Word2vec Stack

A 0.659 5 0.617 0.613 0.593 0.615 0.606 0.621 0.613 0.593 0.575
B 0.854 3 × 0.752 × × 0.843 0.851 × 0.791 ×
C 0.623 4 × × × × 0.623 × × × ×
D 0.057 5 × 0.093 × × 0.062 0.052 × 0.079 ×
E 0.365 8 × × × × 0.365 × × × ×

Table 2: Individual system combinations and their performance.

supervised phase where we use emoticons to in-
fer the polarity of a balanced set of 15M tweets.
The word-embeddings, D ∈ IRd×n are updated
during both the distant and the supervised train-
ing phases, as back-propagation is applied through
the entire network. The neural network is trained
on the 15M tweets for one epoch, followed by a
supervised training phase using SemEval labeled
data. The dimensionality of the vector represen-
tation in the sentence matrix is set to d = 50. The
same parameters are used in both single and 2-step
CNN models. The CNN model is not used in Task
C and D due to the lack of a large distant train-
ing dataset annotated in 5 classes. The network
parameters are summarized in Table 3.

3.3 Results

In Table 2 the integrated systems’ performances
are depicted along with the submitted combina-
tion for each subtask (the omitted systems are de-
noted with ×). For Subtasks A and B the evalua-
tion metric is macro-averaged recall (AvgR), for
Subtask C it is the macro-averaged mean abso-
lute error (MAEM ), for Subtask D the normal-
ized cross-entropy (KLD) is used and for Subtask
E the metric is called the Earth Mover’s Distance
(EMD). All the aforementioned metrics are de-
fined in (Rosenthal et al., 2014).

For Subtask A we combined all individual sys-
tems and achieved an AvgR of 0.659. CNN proved
to be the most robust individual system, achiev-
ing the highest performance (0.621) among the
others. The two-step CNN achieved a slightly
lower score compared to the single-step model.
Since the CNN model is quite robust in distin-
guishing positive vs negative tweets it seems that
the 2-step model makes more errors on the first
step, which is the distinction between neutral and
emotional class. For Subtasks B and D the step-
wise based systems are omitted (since they in-
volve binary classification). The selected combi-

nations are based on our empirical results using
SemEval-2016 test dataset. Particularly, in Sub-
task B, where we decided to omit three subsys-
tems from Webis, the model was ranked at the 3rd
place with 0.854 AvgR. Similarly, in Subtask D
we omitted the same systems as in B and ranked
in 5th place. The results for B and D show that the
highest performance is achieved by the CNN fol-
lowed by the semantic-affective system. However,
in Subtask D the selected combination degraded
the best performing system. Finally, for Subtasks
C and E we submitted only the semenatic-affective
based system, based on experiments conducted on
SemEval-2016 test dataset.

4 Conclusions

We presented a system for the sentiment classifica-
tion of tweets for the SemEval 2017 Task 4: Sen-
timent analysis in twitter. The system participated
in Subtasks A, B, C, D and E and proved very suc-
cessful, ranking on the top 5 places for the first
four subtasks. Our framework is improved using a
two-step CNN, a stacking-based approach for the
3-class problem and we incorporate new features
using the adaptation of the semantic space to each
tweet. Future work should focus on domain adap-
tation technique as we believe there is still room
for improvement. Also, we aim to investigate in
more depth the fusion of different systems.
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