
Proceedings of the 11th International Workshop on Semantic Evaluations (SemEval-2017), pages 616–620,
Vancouver, Canada, August 3 - 4, 2017. c©2017 Association for Computational Linguistics

System Implementation for SemEval-2017 Task 4 Subtask A
Based on Interpolated Deep Neural Networks

1Tzu-Hsuan Yang, 2Tzu-Hsuan Tseng, and 3Chia-Ping Chen
Department of Computer Science and Engineering

National Sun Yat-sen University
Kaohsiung, Taiwan

1m043040003@student.nsysu.edu.tw
2m043040013@student.nsysu.edu.tw

3cpchen@cse.nsysu.edu.tw

Abstract

In this paper, we describe our system
implementation for sentiment analysis in
Twitter. This system combines two models
based on deep neural networks, namely a
convolutional neural network (CNN) and
a long short-term memory (LSTM) re-
current neural network, through interpola-
tion. Distributed representation of words
as vectors are input to the system, and the
output is a sentiment class. The neural net-
work models are trained exclusively with
the data sets provided by the organizers of
SemEval-2017 Task 4 Subtask A. Overall,
this system has achieved 0.618 for the av-
erage recall rate, 0.587 for the average F1
score, and 0.618 for accuracy.

1 Introduction

Analysis of digital content created and spread in
social networks are becoming instrumental in pub-
lic affairs. Twitter is one of the popular social
networks, so there are more and more researches
on Twitter recently, including sentiment analysis,
which predicts the polarity of a message.

A message submitted to Twitter is called a
tweet. Millions of tweets are created every hour,
expressing users’ views or emotions towards all
sorts of topics. Different from a document or an
article, a tweet is limited in length to 140 charac-
ters. In addition, tweets are often colloquial and
may contain emotional symbols called emoticons.

For sentiment analysis, deep learning-based ap-
proaches have performed well in recent years.
For example, convolution neural networks (CNN)
with word embeddings have been implemented for
text classification (Kim, 2014), and have achieved
state-of-the-art results in SemEval 2015 (Severyn
and Moschitti, 2015).

In this paper, we describe our system for
SemEval-2017 Task 4 Subtask A for message po-
larity classification (Rosenthal et al., 2017). It
classifies the sentiment of a tweet as positive, neu-
tral, or negative. Our system combines a CNN and
a recurrent neural network (RNN) based on long
short-term memory (LSTM) cells. We use word
embeddings in both models and interpolate them.
Our submission achieved 0.618 for average recall,
which ranked 19th out of 39 participating teams
for subtask A.

This paper is organized as follows. In Section 2,
we review previous studies on sentiment analysis
in Twitter. In Section 3, we describe data, pre-
processing steps, model architectures, and tools
used in developing our system. In Section 4, we
present the evaluation results along with our com-
ments. In Section 5, we draw conclusion and dis-
cuss future works.

2 Related Works

In this section, we briefly review the research
works of sentiment analysis in Twitter based on
deep neural networks. A one-layer convolu-
tion neural network with embeddings can achieve
high performance on sentiment analysis (Kim,
2014). In SemEval 2016, quite a few submissions
were based on neural networks. A CNN model
with word embedding is implemented for all sub-
tasks (Ruder et al., 2016). The model performs
well on three-point scale sentiment classification,
while performing poorly on five-point scale sen-
timent classification. A GRU-based model with
two kinds of embedding used for general and task-
specific purpose can be more efficient than CNN
models (Nabil et al., 2016).

616



Vocab. Pos. Neu. Neg. Total
train 29039 2607 1712 713 5032
test 5939 8672 2596 17207

Table 1: Statistics of SemEval-2016.

Vocab. Pos. Neu. Neg. Total
train 38532 12844 12249 4609 29702
dev 7059 10341 3231 20632

Table 2: Statistics of SemEval-2017.

3 Experiment

3.1 Data

We use two datasets called SemEval-2016 and
SemEval-2017. Tables 1 and 2 summarize the
statistics of these datasets.

For the set of SemEval-2016, we obtain 5032
tweets for train data and 17207 tweets for test data
from twitter API, respectively. Although some of
the original tweets were not available in the be-
ginning, we still use this SemEval-2016 data set
for evaluating different models and tuning hyper-
parameters.

The SemEval-2017 is provided by task organiz-
ers. It contains SemEval data used in the years
from 2013 to 2016. We use 2013-train, 2013-
dev, 2013-test, 2014-sarcasm, 2014-test, 2015-
train, 2015-test, 2016-train, 2016-dev, and 2016-
devtest as train data. The 2017-dev data is used
for test data, which is almost the same as the 2016-
test. The models trained with SemEval-2017 data
is used for final submission.

A tweet is pre-processed before it is used in the
neural networks. First, we use a tokenizer to split
a tweet into words, emoticons and punctuation
marks. Then, we replace URLs and USERs with
normalization patterns <URL> and <USER>,
respectively. All uppercase letters are converted
to lowercase letters. Word list contains different
words in the training data, and vocabulary size is
the size of word list. During test, words not in
the word list are removed. After pre-processing,
words are converted to vectors by GloVe (Pen-
nington et al., 2014). Then the sequence of em-
bedding word vectors are input to neural networks.

3.2 System

3.2.1 CNN
The CNN model we use is the architecture used
by Kim (Kim, 2014), which consists of a non-

Figure 1: CNN architecture.

linear convolution layer, max-pooling layer, one
hidden layer, and softmax layer. Figure 1 depicts
our CNN model.

The input of this model is a pre-processed tweet,
which is treated as a sequence of words. We pad
input texts with zeros to the length n.

A pre-processed tweet w1:n is represented by
the corresponding word embedding x1:n, where xi

is the d-dimensional word vector of i-th word. The
word embedding is a parameterized function map-
ping words to vectors as a lookup table parameter-
ized by a matrix. Through word-embedding, in-
put words are embedded into dense representation,
and then feed to the convolution layer. Words out-
of-embeddings will be represented by zero vector.
And each input texts will be mapped to a n × d
input matrix.

At the convolution layer, filters of size m × d
slide over the input matrix and creates (n−m+1)
features each filter. We use k filters to create k
feature maps. Thus, the size of the convolutional
layer is k × 1× (n−m+ 1).

We apply the max pooling operation over each
feature map (Kim, 2014). After max pooling, we
use dropout by randomly drop out some activation
values while training for regularization in order
to prevent the model from overfitting (Srivastava
et al., 2014). Then we add a hidden layer to get the
appropriate representation and a dense layer with
softmax function to get probabilities for classifica-
tion.

3.2.2 RNN
Figure 2 shows our architecture of RNN-based
model, which contains input layer, embedding
layer, hidden layer and softmax layer.

At the input layer, each tweet is treated as a
sequence of words w1, w2, ..., wn, where n is the
maximum tweet length. In order to fix the length

617



Figure 2: LSTM-based RNN architecture.

of tweet, we pad zero at beginning of tweets whose
length is less than n. The size of input layer is
equal to the size of word list, and each word is
represented by a one-hot vector.

At the embedding layer, each word is converted
to a word vector. We use pre-trained word vectors,
GloVe, where word vectors are stored in a matrix.
Specifically, a word in the word list is represented
by the corresponding row vector (or a leading sub-
vector), while a word not in the word list is repre-
sented by a zero vector.

At the hidden layer, we choose LSTM mem-
ory cell (Hochreiter and Schmidhuber, 1997) for
its long-range dependency. It is argued that LSTM
can get better results than simple RNN. The model
contains one hidden layer, which size is h. The
hidden states of first word to (n− 1)-th word in a
tweet connect to the hidden state of the next word.
Only the hidden state of n-th word connect to the
next (output) layer. Also, we add dropout to the
hidden layer for regularization.

At the softmax layer, output values through a
softmax function model the probabilities of three
classes. During test phase, the sentiment class
with the greatest probability is the output senti-
ment.

3.2.3 Interpolation
On SemEval-2016 data, performances of SA sys-
tems with respect to different sentiment classes
have shown significant difference. Thus, we inter-
polate them to achieve better generalisation. Af-
ter models are trained respectively, we interpolate
them with weight λ

pinterp = λ× plstm + (1− λ)× pcnn (1)

where plstm and pcnn are the probability of the
LSTM and CNN model, respectively, and pinterp
is the interpolated probability.

3.2.4 Settings

The maximum length for the tweets in SemEval-
2017 data set is n = 99. The dimension of word
vector is set to d = 100 at first, and then varied to
a few values.

For CNN model, we choose k = 50 filters with
size 3 × 100 with stride s = 1 over the input
matrix. Max pooling is applied over each feature
map. Then, we drop activations randomly with the
probability p = 0.2 and feed to the hidden layer
with size h = 20.

For RNN-based model, input size i is the size
of word list and hidden size h is 50. We drop in-
put units for input gates and recurrent connections
with same probability p = 0.2.

We have tried rectified linear units (ReLU) and
hyperbolic tangent (tanh) function for the activa-
tion function, and it seems that tanh performs bet-
ter than ReLU in our experiments. We use cross
entropy for the objective function and Adam al-
gorithm for optimization. Finally, the CNN and
LSTM models are interpolated with weight λ =
0.6 through a grid search.

3.3 Tool

The tokenizer for text pre-processing is the Hap-
pytokenizer1. All models we use in our experi-
ments are implemented using Keras2 with Tensor-
flow3 backend.

4 Result

4.1 Comparison of Representations

First, we compare one-hot representation (sparse)
and word vector representation (distributed). We
train simple RNN and LSTM-based model and
evaluate them on SemEval-2016 data. Each model
contains one hidden layer with 50 hidden units.
For models using word embeddings, the dimen-
sion of a word vector is d = 100.

The results are shown in Table 3. We can see
that word vectors work better than one-hot vectors,
except for the F1 score of RNN. We also observe
that RNN model with embedding is prone to pre-
dict negative class as positive, and LSTM model
predicts more accurately over all classes.

1http://sentiment.christopherpotts.net/tokenizing.html
2https://keras.io/
3https://www.tensorflow.org/

618



RNN LSTM
sparse dist. sparse dist.

Rpos 0.634 0.867 0.726 0.807
Rneu 0.339 0.401 0.377 0.444
Rneg 0.227 0.014 0.271 0.344
Avg R 0.400 0.427 0.458 0.532
Avg F1 0.365 0.310 0.427 0.515
Acc. 0.424 0.503 0.482 0.554

Table 3: One-hot (sparse) vs. word vector (dist.).

system ID Avg R Avg F1 Acc.
RNN-50-20 0.417 0.319 0.485
RNN-100-50 0.427 0.310 0.503
RNN-200-50 0.436 0.410 0.453
LSTM-50-20 0.504 0.496 0.516
LSTM-100-50 0.532 0.515 0.554
LSTM-200-50 0.537 0.522 0.549
LSTM-200-100 0.512 0.500 0.523

Table 4: RNN vs. LSTM. The numbers in a sys-
tem ID indicate the dimension of word vector and
the number of neurons in the hidden layer.

4.2 Comparison of RNN and LSTM

Table 4 list the results of the comparison of RNN
and LSTM using SemEval-2016 data. The re-
sults of LSTM model are better than RNN model,
showing that long-range dependency within text
message is useful in sentiment analysis.

4.3 Comparison of Data Amounts

Table 5 shows the results of LSTM and CNN on
SemEval-2016 and SemEval-2017 data. As ex-
pected, various measures of performance are im-
proved with an increase in the amount of train
data.

4.4 Model Interpolation

From Table 5, we can see that CNN performs bet-
ter than LSTM on negative class, and LSTM per-
forms better than CNN on positive and neutral
classes. Thus, by combining their strengths, bet-
ter generalization can often be achieved than an
individual system.

We tune hyper-parameter λ of interpolation via
a grid search. We choose word vector size d = 100
for both models, one hidden layer with 50 hidden
neurons for LSTM model, and number of filters
k = 50 and fully connected size h = 20 for CNN
model.

Model LSTM-100-50 CNN-100-50-20
2016 2017 2016 2017

Rpos 0.807 0.729 0.824 0.697
Rneu 0.444 0.633 0.335 0.502
Rneg 0.344 0.451 0.344 0.606
Avg R 0.532 0.604 0.501 0.602
Avg F1 0.515 0.581 0.487 0.564
Acc. 0.554 0.637 0.505 0.585

Table 5: Comparison of LSTM and CNN using
different amounts of data. Here the numbers in a
CNN system ID indicate the dimension of word
vector, the number of filters, and the size of the
hidden layer.

Avg R Avg F1 Acc.
baseline 0.333 0.255 0.342

2017 LSTM 0.604 0.581 0.637
dev CNN 0.602 0.564 0.585

interpolation 0.631 0.604 0.640
2017 baseline 0.333 0.162 0.193
test interpolation 0.618 0.587 0.616

Table 6: Results on SemEval-2017 data with inter-
polation weight λ = 0.6.

Eventually, the interpolated system gets 0.618
for average recall rate on subtask A on SemEval
2017 test data, as shown in Table 6.

5 Conclusion

We implemented CNN and LSTM models with
word embedding for sentiment analysis in Twitter
data organized in SemEval 2017. Our experiments
reveled an interesting point that LSTM model per-
forms well on positive and neutral classes, while
CNN model performs average on all classes. The
final submission is based on model interpolation,
with the weight decided by development set. It
achieved 0.618 for 3-class average recall rate,
0.587 for 2-class average F1-score, and 0.618 for
accuracy.

For near-future works, we hope to get closer in
performance to the leaders on the board, respec-
tively 0.681, 0.685, and 0.657. We will start by
looking at methods that deal with data imbalance,
as well as adversarial training approaches.

Acknowledgments

We thank the Ministry of Science and Technology
of Taiwan, ROC for funding this research.

619



References
Sepp Hochreiter and Jürgen Schmidhuber. 1997.

Long short-term memory. Neural computation
9(8):1735–1780.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882 .

Mahmoud Nabil, Amir Atyia, and Mohamed Aly.
2016. Cufe at semeval-2016 task 4: A gated recur-
rent model for sentiment classification. In Proceed-
ings of the 10th International Workshop on Semantic
Evaluation (SemEval-2016).

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP). pages 1532–
1543. http://www.aclweb.org/anthology/D14-1162.

Sara Rosenthal, Noura Farra, and Preslav Nakov. 2017.
SemEval-2017 task 4: Sentiment analysis in Twit-
ter. In Proceedings of the 11th International Work-
shop on Semantic Evaluation. Association for Com-
putational Linguistics, Vancouver, Canada, SemEval
’17.

Sebastian Ruder, Parsa Ghaffari, and John G Bres-
lin. 2016. Insight-1 at semeval-2016 task 4:
Convolutional neural networks for sentiment clas-
sification and quantification. arXiv preprint
arXiv:1609.02746 .

Aliaksei Severyn and Alessandro Moschitti. 2015.
Unitn: Training deep convolutional neural network
for twitter sentiment classification. In Proceedings
of the 9th International Workshop on Semantic Eval-
uation (SemEval 2015), Association for Computa-
tional Linguistics, Denver, Colorado. pages 464–
469.

Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search 15(1):1929–1958.

620


