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Abstract

In this paper we describe our attempt at
producing a state-of-the-art Twitter senti-
ment classifier using Convolutional Neural
Networks (CNNs) and Long Short Term
Memory (LSTMs) networks. Our sys-
tem leverages a large amount of unlabeled
data to pre-train word embeddings. We
then use a subset of the unlabeled data to
fine tune the embeddings using distant su-
pervision. The final CNNs and LSTMs
are trained on the SemEval-2017 Twitter
dataset where the embeddings are fined
tuned again. To boost performances we
ensemble several CNNs and LSTMs to-
gether. Our approach achieved first rank
on all of the five English subtasks amongst
40 teams.

1 Introduction

Determining the sentiment polarity of tweets has
become a landmark homework exercise in natural
language processing (NLP) and data science
classes. This is perhaps because the task is easy to
understand and it is also easy to get good results
with very simple methods (e.g. positive - negative
words counting). The practical applications of
this task are wide, from monitoring popular
events (e.g. Presidential debates, Oscars, etc.) to
extracting trading signals by monitoring tweets
about public companies.  These applications
often benefit greatly from the best possible
accuracy, which is why the SemEval-2017 Twitter
competition promotes research in this area. The
competition is divided into five subtasks which
involve standard classification, ordinal classifi-
cation and distributional estimation. For a more
detailed description see (Rosenthal et al., 2017).
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In the last few years, deep learning techniques
have significantly out-performed traditional meth-
ods in several NLP tasks (Chen and Manning,
2014; Bahdanau et al., 2014), and sentiment anal-
ysis is no exception to this trend (Rojas-Barahona,
2016). In fact, previous iterations of the Se-
mEval Twitter sentiment analysis competition
have already established their power over other
approaches (Nakov et al., 2016; Severyn and Mos-
chitti, 2015; Deriu et al., 2016). Two of the most
popular deep learning techniques for sentiment
analysis are CNNs and LSTMs. Consequently,
in an effort to build a state-of-the-art Twitter
sentiment classifier, we explore both models and
build a system which combines both.

This paper is organized as follows. In sec. 2
we describe the architecture of the CNN and the
LSTM used in our system. In sec. 3 we expand
on the three training phases used in our system.
In sec. 4 we discuss the various tricks that were
used to fine tune the system for each individual
subtasks. Finally in sec. 5 we present the perfor-
mance of the system and in sec. 6 we outline our
main conclusions.

2 System description

2.1 CNN

Let us now describe the architecture of the CNN
we worked with. Its architecture is almost identi-
cal to the CNN of Kim (2014). A smaller version
of our model is illustrated on Fig. 1. The input
of the network are the tweets, which are tokenized
into words. Each word is mapped to a word vector
representation, i.e. a word embedding, such that
an entire tweet can be mapped to a matrix of size
s x d, where s is the number of words in the tweet
and d is the dimension of the embedding space
(we chose d = 200). We follow Kim (2014) zero-
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Figure 1: Architecture of a smaller version of the CNN used. Picture is taken from (Zhang and Wallace,

2015) with minor modifications.

padding strategy such that all tweets have the same
matrix dimension X € R¥*4 where we chose
s’ = 80. We then apply several convolution op-
erations of various sizes to this matrix. A single
convolution involves a filtering matrix w € R"*?
where h is the size of the convolution, meaning the
number of words it spans. The convolution opera-
tion is defined as

¢ = f Z’wj,k(X[i:iJrhfl])j’k'i_b (1)
ik

where b € R is a bias term and f(x) is a non-
linear function, which we chose to be the relu
function. The output ¢ € R¥~"*1 is therefore
a concatenation of the convolution operator over
all possible window of words in the tweet. Note
that because of the zero-padding strategy we use,
we are effectively applying wide convolutions
(Kalchbrenner et al., 2014). We can use multiple
filtering matrices to learn different features, and
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additionally we can use multiple convolution
sizes to focus on smaller or larger regions of the
tweets. In practice, we used three filter sizes
(either [1,2,3], [3,4,5] or [5,6,7] depending on
the model) and we used a total of 200 filtering
matrices for each filter size.

We then apply a max-pooling operation to each
convolution ¢pax = max(c). The max-pooling
operation extracts the most important feature for
each convolution, independently of where in the
tweet this feature is located. In other words, the
CNN’s structure effectively extracts the most im-
portant n-grams in the embedding space, which is
why we believe these systems are good at sentence
classification. The max-pooling operation also al-
lows us to combine all the ¢, of each filter into
one vector Cpax € R” where m is the total num-
ber of filters (in our case m = 3 x 200 = 600).
This vector then goes through a small fully con-
nected hidden layer of size 30, which is then in
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Figure 2: Architecture of a smaller version of the bi-directional LSTM used. Picture is inspired by Figure

1 of (Zhang and Wallace, 2015).

turn passed through a softmax layer to give the
final classification probabilities. To reduce over-
fitting, we add a dropout layer (Srivastava et al.,
2014) after the max-pooling layer and after the
fully connected hidden layer, with a dropout prob-
ability of 50% during training.

22 LSTM

Let us now describe the architecture of the LSTM
system we worked with. A smaller version of our
model is illustrated on Fig. 2. Its main build-
ing blocks are two LSTM units. LSTMs are part
of the recurrent neural networks (RNN) family,
which are neural networks that are constructed to
deal with sequential data by sharing their internal
weights across the sequence. For each element in
the sequence, that is for each word in the tweet,
the RNN uses the current word embedding and
its previous hidden state to compute the next hid-
den state. In its simplest version, the hidden state
h; € R™ (where m is the dimension of the RNN,
which we pick to be m = 200) at time ¢ is com-
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puted by
hy = [fWh -2+ Up-hi—1+bp) (2)

where z; is the current word embedding, W}, €
R™*4 and U, € R™ ™ are weight matrices,
br, € R™ is a bias term and f(z) is a non-linear
function, usually chosen to be tanh. The ini-
tial hidden state is chosen to be a vector of ze-
ros. Unfortunately this simple RNN suffers from
the exploding and vanishing gradient problem dur-
ing the backpropagation training stage (Hochre-
iter, 1998). LSTMs solve this problem by hav-
ing a more complex internal structure which al-
lows LSTMs to remember information for either
long or short terms (Hochreiter and Schmidhuber,
1997). The hidden state of an LSTM unit is com-
puted by (Zaremba et al., 2014)

fi = oW a4 +Up-hi—1+by)
i = o(Wi -z +U;-hi—1+b;)
op = oWy -xt+Us-hi—1+bo)



e = froci
+ig o tanh (W, - oy + Ue - hy—1 + bc)
ht = opotanh(c) 3)

where 4; is called the input gate, f; is the forget
gate, c; is the cell state, h; is the regular hidden
state, o is the sigmoid function, and o is the
Hadamard product.

One drawback from the LSTM is that it does not
sufficiently take into account post word informa-
tion because the sentence is read only in one direc-
tion; forward. To solve this problem, we use what
is known as a bidirectional LSTM, which is two
LSTMs whose outputs are stacked together. One
LSTM reads the sentence forward, and the other
LSTM reads it backward. We concatenate the hid-
den states of each LSTM after they processed their
respective final word. This gives a vector of di-
mension 2m = 400, which is fed to a fully con-
nected hidden layer of size 30, and then passed
through a softmax layer to give the final classifi-
cation probabilities. Here again we use dropout to
reduce over-fitting; we add a dropout layer before
and after the LSTMs, and after the fully connected
hidden layer, with a dropout probability of 50%
during training.

3 Training

To train those models we had access to 49,693 hu-
man labeled tweets for subtask A, 30,849 tweets
for subtasks (C, E) and 18,948 tweets for subtasks
(B, D). In addition to this human labeled data,
we collected 100 million unique unlabeled English
tweets using the Twitter streaming API. From this
unlabeled dataset, we extracted a distant dataset
of 5 million positive tweets and 5 million nega-
tive tweets. To extract this distant dataset we used
the strategy of Go et al. (2009), that is we sim-
ply associate positive tweets with the presence of
positive emoticons (e.g. “:)”) and vice versa for
negative tweets. Those three datasets (unlabeled,
distant and labeled) were used separately in the
three training stages which we now present. Note
that our training strategy is very similar to the one
used in (Severyn and Moschitti, 2015; Deriu et al.,
2016).

3.1 Pre-processing

Before feeding the tweets to any training stage,
they are pre-processed using the following proce-
dure:
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e URLs are replaced by the <url> token.

e Several emoticons are replaced by the to-
kens <smile>, <sadface>, <lolface> or
<neutralface>.

e Any letter repeated more than 2 times in a
row is replaced by 2 repetitions of that letter
(for example, “s00000” is replaced by “s00”).

o All tweets are lowercased.

3.2 Unsupervised training

We start by using the 100 million unlabeled tweets
to pre-train the word embeddings which will later
be used in the CNN and LSTM. To do so, we
experimented with 3 unsupervised learning al-
gorithms, Google’s Word2vec (Mikolov et al.,
2013a,b), Facebook’s FastText (Bojanowski et al.,
2016) and Stanford’s GloVe (Pennington et al.,
2014). Word2vec learns word vector represen-
tations by attempting to predict context words
around an input word. FastText is very similar to
Word2vec but it also uses subword information in
the prediction model. GloVe on the other hand is a
model based on global word-word co-occurrence
statistics. For all three algorithms we used the
code provided by the authors with their default set-
tings.

3.3 Distant training

The embeddings learned in the unsupervised
phase contain very little information about the sen-
timent polarity of the words since the context for
a positive word (ex. “good”) tends to be very sim-
ilar to the context of a negative word (ex. “bad”).
To add polarity information to the embeddings, we
follow the unsupervised training by a fine tuning
of the embeddings via a distant training phase. To
do so, we use the CNN described in sec. 2 and
initialize the embeddings with the ones learned in
the unsupervised phase. We then use the distant
dataset to train the CNN to classify noisy positive
tweets vs. noisy negative tweets. The first epoch
of the training is done with the embeddings frozen
in order to minimize large changes in the embed-
dings. We then unfreeze the embeddings and train
for 6 more epochs. After this training stage, words
with very different sentiment polarity (ex. “good”
vs. “bad”) are far apart in the embedding space.



3.4 Supervised training

The final training stage uses the human labeled
data provided by SemEval-2017. We initialize
the embeddings in the CNN and LSTM models
with the fine tuned embeddings of the distant
training phase, and freeze them for the first ~ 5
epochs. We then train for another ~ 5 epochs with
unfrozen embeddings and a learning rate reduced
by a factor of 10. We pick the cross-entropy as
the loss function, and we weight it by the inverse
frequency of the true classes to counteract the
imbalanced dataset. The loss is minimized using
the Adam optimizer (Kingma and Ba, 2014) with
initial learning rate of 0.001. The models were
implemented in TensorFlow and experiments
were run on a GeForce GTX Titan X GPU.

To reduce variance and boost accuracy, we en-
semble 10 CNNs and 10 LSTMs together through
soft voting. The models ensembled have different
random weight initializations, different number
of epochs (from 4 to 20 in total), different set
of filter sizes (either [1,2, 3], [3,4,5] or [5,6,7])
and different embedding pre-training algorithms
(either Word2vec or FastText).

4 Subtask specific tricks

The models described in sec. 2 and the training
method described in sec. 3 are used in the same
way for all five subtasks, with a few special
exceptions which we now address. Clearly,
the output dimension differs depending on the
subtask, for subtask A the output dimension
is 3, while for B and D it is 2 and for subtask
C and E it is 5. Furthermore, for quantification
subtasks (D and E), we use the probability average
approach of Bella et al. (2010) to convert the
output probabilities into sentiment distributions.

Finally for subtasks that have a topic associated
with the tweet (B, C, D and E), we add two
special steps which we noticed improves the
accuracy during the cross-validation phase. First,
if any of the words in the topic is not explicitly
mentioned in the tweet, we add those missing
words at the end of the tweet in the pre-processing
phase. Second, we concatenate to the regular
word embeddings another embedding space of
dimension 5 which has only 2 possible vectors.
One of these 2 vectors indicates that the current
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word is part of the topic, while the other vector
indicates that the current word is not part of the
topic.

5 Results

Let us now discuss the results obtained from this
system. In order to assess the performance of
each model and their variations, we first show
their scores on the historical Twitter test set of
2013, 2014, 2015 and 2016 without using any of
those sets in the training dataset, just like it was
required for the 2016 edition of this competition.
For brevity, we only focus on task A since it
tends to be the most popular one. Moreover, in
order to be consistent with historical editions of
this competition, we use the average F} score of
the positive and negative class as the metric of
interest. This is different from the macro-average
recall which is used in the 2017 edition, but this
should not affect the conclusions of this analysis
significantly since we found that the two metrics
were highly correlated. The results are summa-
rized in Table 1. This table is not meant to be an
exhaustive list of all the experiments performed,
but it does illustrate the relative performances
of the most important variations on the models
explored here.

We can see from Table 1 that the GloVe
unsupervised algorithm gives a lower score than
both FastText and Word2vec. It is for this reason
that we did not include the GloVe variation in the
ensemble model. We also note that the absence of
class weights or the absence of a distant training
stage lowers the scores significantly, which
demonstrates that these are sound additions.
Except for these three variations, the other models
have similar scores. However, the ensemble model
effectively outperforms all the other individual
models. Indeed, while these individual models
give similar scores, their outputs are sufficiently
uncorrelated such that ensembling them gives
the score a small boost. To get a sense of how
correlated with each other these models are, we
can compute the Pearson correlation coefficient
between the output probabilities of any pairs of
models, see Table 2. From this table we can see
that the most uncorrelated models come from
different supervised learning models (CNN vs.
LSTM) and from different unsupervised learning



System | 2013 | 2014 | 2015 | 2016 |
Logistic regression on 1-3 grams baseline 0.627 | 0.629 | 0.586 | 0.558
CNN (word2vec, convolution size=[3,4,5]) 0.715 | 0.723 | 0.688 | 0.643
CNN (fasttext, convolution size=[3,4,5]) 0.720 | 0.733 | 0.665 | 0.640
CNN (glove, convolution size=[3,4,5]) 0.709 | 0.714 | 0.660 | 0.637
CNN (word2vec, convolution size=[1,2,3]) 0.712 | 0.735 | 0.673 | 0.642
CNN (word2vec, convolution size=[5,6,7]) 0.710 | 0.732 | 0.676 | 0.646
CNN (word2vec, convolution size=[3,4,5], no class weights) 0.682 | 0.679 | 0.659 | 0.640
CNN (word2vec, convolution size=[3,4,5], no distant training) 0.698 | 0.716 | 0.660 | 0.636
CNN (word2vec, convolution size=[3,4,5], no fully connected layer) | 0.715 | 0.724 | 0.683 | 0.641
LSTM (word2vec) 0.720 | 0.733 | 0.677 | 0.636
LSTM (fasttext) 0.712 | 0.730 | 0.666 | 0.633
LSTM (glove) 0.710 | 0.730 | 0.658 | 0.630
LSTM (word2vec, no class weights) 0.689 | 0.661 | 0.652 | 0.643
LSTM (word2vec, no distant training) 0.698 | 0.719 | 0.647 | 0.629
LSTM (word2vec, no fully connected layer) 0.719 | 0.725 | 0.675 | 0.634
| Ensemble model | 0.725 | 0.748 | 0.679 | 0.648 |
’ Previous best historical scores ‘ 0.728 ‘ 0.744 ‘ 0.671 ‘ 0.633 ‘

Table 1: Validation results on the historical test sets of subtask A. Bold values represent the best score
for a given test set. The 2013 test set contains 3,813 tweets, the 2014 test set contains 1,853 tweets, the
2015 test set contains 2,392 tweets and the 2016 test set contains 20,632 tweets. Word2vec, fasttext and
glove refer to the choice of algorithm in the unsupervised phase. No class weights means no weights
were used in the cost function to counteract the imbalanced classes. No distant training means that we
used the embeddings from the unsupervised phase without distant training. No fully connected layer
means we removed the fully connected hidden layer from the network. Ensemble model refers to the
ensemble model described in Sec. 3.4. The previous best historical scores were collected from (Nakov
et al., 2016). They do not come from a single system or from a single team; they are the best previous

scores obtained for each test set over the years.

algorithms (Word2vec vs. FastText).

For the predictions on the 2017 test set, the
system is retrained on all available training data,
which includes previous years testing data. The re-
sults of our system on the 2017 test set are shown
on Table 3. Our system achieved the best scores
on all of the five English subtasks. For subtask
A, there is actually a tie between our submission
and another team (DataStories), but note that with
respect to the other metrics (accuracy and FfV
score) our submission ranks higher.

6 Conclusion

In this paper we presented the system we used to
compete in the SemEval-2017 Twitter sentiment
analysis competition. Our goal was to experiment
with deep learning models along with modern
training strategies in an effort to build the best
possible sentiment classifier for tweets. The final
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model we used was an ensemble of 10 CNNs and
10 LSTMs with different hyper-parameters and
different pre-training strategies. We participated
in all of the English subtasks, and obtained first
rank in all of them.

For future work, it would be interesting to ex-
plore systems that combine a CNN and an LSTM
more organically than through an ensemble model,
perhaps a model similar to the one of Stojanovski
et al. (2016). It would also be interesting to an-
alyze the dependence of the amount of unlabeled
and distant data on the performance of the models.
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’ System/System H System 1 | System 2 | System 3 | System 4 | System 5 | System 6

System 1 1.0 0.95 0.97 0.97 0.93 0.91
System 2 0.95 1.0 0.95 0.95 0.91 0.92
System 3 0.97 0.95 1.0 0.96 0.92 0.91
System 4 0.97 0.95 0.96 1.0 0.92 0.91
System 5 0.93 0.91 0.92 0.92 1.0 0.95
System 6 0.91 0.92 091 0.91 0.95 1.0

Table 2: Correlation matrix for the most important models. System 1: CNN (word2vec, convolution
size=[3,4,5]), System 2: CNN (fasttext, convolution size=[3,4,5]), System 3: CNN (word2vec, convolu-
tion size=[1,2,3]), System 4: CNN (word2vec, convolution size=[5,6,7]), System 5: LSTM (word2vec),

System 6: LSTM (fasttext).

’ Subtask H Metric \ Rank \ BB_twtr submission \ Next best submission ‘
A Macroaveraged recall 1/38 0.681 0.681
B Macroaveraged recall 1/23 0.882 0.856
C Macroaveraged mean absolute error | 1/15 0.481 0.555
D Kullback-Leibler divergence 1/15 0.036 0.048
E Earth movers distance 1/12 0.245 0.269

Table 3: Results on the 2017 test set. The 2017 test set contains 12,379 tweets. For a description of the
subtasks and metrics used, see (Rosenthal et al., 2017). For subtask A and B, higher is better, while for

subtask C, D and E, lower is better.
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