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Abstract

Clinical TempEval 2017 aimed to answer
the question: how well do systems trained
on annotated timelines for one medical con-
dition (colon cancer) perform in predict-
ing timelines on another medical condition
(brain cancer)? Nine sub-tasks were in-
cluded, covering problems in time expres-
sion identification, event expression identi-
fication and temporal relation identification.
Participant systems were evaluated on clin-
ical and pathology notes from Mayo Clinic
cancer patients, annotated with an exten-
sion of TimeML for the clinical domain. 11
teams participated in the tasks, with the
best systems achieving F1 scores above
0.55 for time expressions, above 0.70 for
event expressions, and above 0.30 for tem-
poral relations. Most tasks observed about
a 20 point drop over Clinical TempEval
2016, where systems were trained and eval-
uated on the same domain (colon cancer).

1 Introduction

The TempEval shared tasks have, since 2007, pro-
vided a focus for research on temporal information
extraction (Verhagen et al., 2007, 2010; UzZaman
et al., 2013). In recent years the community has
moved toward testing such information extraction
systems on clinical data, to address a common need
of doctors and clinical researchers to search over
timelines of clinical events like symptoms, diseases,
and procedures. In the Clinical TempEval shared
tasks (Bethard et al., 2015, 2016), participant sys-
tems have competed to identify critical components
of the timeline of a clinical text: time expressions,
event expressions, and temporal relations. For ex-
ample, Figure 1 shows the annotations that a system
is expected to produce when given the text:

April 23, 2014: The patient did not have
any postoperative bleeding so we’ll re-
sume chemotherapy with a larger bolus
on Friday even if there is slight nausea.

Clinical TempEval 2017 introduced a new aspect
to this problem: domain adaptation. Whereas in
Clinical TempEval 2015 and 2016, systems were
both trained and tested on notes from colon cancer
patients, in 2017, systems were trained on colon
cancer patients, but tested on brain cancer patients.
The diseases, symptoms, procedures, etc. vary
widely across these two patient populations, and
the doctors treating these different kinds of cancer
make a variety of different linguistic choices when
discussing such patients. As a result, systems that
participated in Clinical TempEval 2017 were faced
with a much more challenging task than systems
from 2015 or 2016.

2 Data

The Clinical TempEval corpus was based on a set
of clinical notes and pathology reports from 200
colon cancer patients and 200 brain cancer patients
at the Mayo Clinic. These notes were manually
de-identified by the Mayo Clinic to replace names,
locations, etc. with generic placeholders, but time
expressions were not altered. The notes were
then manually annotated by the THYME project
(thyme.healthnlp.org) using an extension
of ISO-TimeML for the annotation of times, events
and temporal relations in clinical notes (Styler,
IV et al., 2014b). This extension includes addi-
tions such as new time expression types (e.g., PRE-
POSTEXP for expressions like postoperative), new
EVENT attributes (e.g., DEGREE=LITTLE for ex-
pressions like slight nausea), and an increased fo-
cus on temporal relations of type CONTAINS (a.k.a.
INCLUDES).

The annotation procedure was as follows:
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TIMEX3

CLASS=DATE

April 23, 2014 : The patient did not have any

TIMEX3

CLASS=PREPOSTEXP

postoperative

EVENT

TYPE=N/A

DEGREE=N/A

POLARITY=NEG

MODALITY=ACTUAL

DOCTIMEREL=BEFORE

bleeding so we’ll

EVENT

TYPE=ASPECTUAL

DEGREE=N/A

POLARITY=POS

MODALITY=ACTUAL

DOCTIMEREL=AFTER

resume

EVENT

TYPE=N/A

DEGREE=N/A

POLARITY=POS

MODALITY=ACTUAL

DOCTIMEREL=AFTER

chemotherapy with a larger

EVENT

TYPE=N/A

DEGREE=N/A

POLARITY=POS

MODALITY=ACTUAL

DOCTIMEREL=AFTER

bolus on

TIMEX3

CLASS=DATE

Friday even if there is slight

EVENT

TYPE=N/A

DEGREE=LITTLE

POLARITY=POS

MODALITY=HYPOTHETICAL

DOCTIMEREL=AFTER

nausea .

CONTAINS

CONTAINSCONTAINS

Figure 1: Example Clinical TempEval annotations

1. Annotators identified time and event expres-
sions, along with their attributes

2. Adjudicators revised and finalized the time
and event expressions and their attributes

3. Annotators identified temporal relations be-
tween pairs of events and events and times

4. Adjudicators revised and finalized the tempo-
ral relations

More details on the corpus annotation process are
documented in Styler, IV et al. (2014a).

Because the data contained incompletely de-
identified clinical data (the time expressions were
retained), participants were required to sign a data
use agreement with the Mayo Clinic to obtain the
raw text of the clinical notes and pathology re-
ports.1 The event, time and temporal relation an-
notations were distributed separately from the text,
in an open source repository2 using the Anafora
standoff format (Chen and Styler, 2013).

Each corpus (colon cancer and brain cancer)
was split into three portions: Train (50%), Dev
(25%) and Test (25%). Patients were sorted by
patient number (an integer arbitrarily assigned by
the de-identification process) and stratified across
these splits. Table 1 shows the number of doc-
uments, event expressions (EVENT annotations),
time expressions (TIMEX3 annotations) and narra-
tive container relations (TLINK annotations with
TYPE=CONTAINS attributes) in the Train, Dev, and
Test portions of each corpus.

1Details on the data use agreement process can be found
at: http://thyme.healthnlp.org/

2https://github.com/stylerw/thymedata

The raw text of both the colon cancer and brain
cancer corpora were already released as part of
Clinical TempEval 2015 and 2016, as were the
time, event, and temporal relation annotations for
the colon cancer corpus. However, none of the
annotations for the brain cancer corpus were previ-
ously released.

Clinical TempEval 2017 ran several phases of
evaluation, where different data were released for
training and testing sets3.

Trial This phase replicated the Clinical TempEval
2016 setup: systems were expected to train on
the colon cancer Train and Dev sets, and were
tested on the colon cancer Test set. This phase
was organized primarily to allow participants to
validate the format of their system output.

Unsupervised Domain Adaptation In this phase,
systems were expected to train on all the colon
cancer annotations (released in previous Clinical
TempEvals) and were tested on the annotations
of the brain cancer Test set. No brain cancer
annotations were provided for training, though
systems were free to use the raw brain cancer
text if they had a way to do so.

Supervised Domain Adaptation This phase re-
leased annotations for the first 10 patients in
the brain cancer Train data (Train-10 in Table 1).
Systems were expected to train on these brain
cancer annotations, in addition to the colon can-
cer annotations provided previously, and were

3All releases were made at the CodaLab site:
https://competitions.codalab.org/
competitions/15621

566



Colon Cancer Brain Cancer
Train Dev Test Train-10 Train Dev Test

Documents 293 147 151 30 298 149 148
TIMEX3s 3833 2078 1952 350 3527 1498 1552
EVENTs 38890 20974 18990 2557 26210 11162 11510
TLINKs with TYPE=CONTAINS 11150 6163 5894 624 3938 1641 1759

Table 1: Number of documents, event expressions, time expressions and narrative container relations in
Train, Dev, and Test portions of the THYME data. All colon cancer data was released as part of Clinical
TempEval 2015 and 2016. The Train-10 column is the data from the first 10 patients of the brain cancer
Train data, which was the only additional training data released in Clinical TempEval 2017.

tested on the annotations of the brain cancer Test
set. Systems were again free to use all the raw
brain cancer text if they had a way to do so.

Note that across all phases, the only brain cancer
data released was the Train-10 set. The remainder
of the brain cancer data was reserved for future
evaluations.

3 Tasks

Nine tasks were included (the same as those of
Clinical TempEval 2015 and 2016), grouped into
three categories:

• Identifying time expressions (TIMEX3 annota-
tions in the THYME corpus) consisting of the
following components:

– The span (character offsets) of the expression
in the text

– Class: DATE, TIME, DURATION, QUANTI-
FIER, PREPOSTEXP, or SET

• Identifying event expressions (EVENT annota-
tions in the THYME corpus) consisting of the
following components:

– The span (character offsets) of the expression
in the text

– Contextual Modality: ACTUAL, HYPOTHETI-
CAL, HEDGED, or GENERIC

– Degree: MOST, LITTLE, or N/A
– Polarity: POS or NEG

– Type: ASPECTUAL, EVIDENTIAL, or N/A

• Identifying temporal relations between events
and times, focusing on the following types:

– Relations between events and the document
creation time (BEFORE, OVERLAP, BEFORE-
OVERLAP, or AFTER), represented by DOC-
TIMEREL annotations.

– Narrative container relations (Pustejovsky and
Stubbs, 2011), which indicate that an event or
time is temporally contained in (i.e., occurred
during) another event or time, represented by
TLINK annotations with TYPE=CONTAINS.

4 Evaluation Metrics

All of the tasks were evaluated using the standard
metrics of precision (P ), recall (R) and F1:

P =
|S ∩H|
|S| R =

|S ∩H|
|H| F1 =

2 · P ·R
P + R

where S is the set of items predicted by the system
and H is the set of items annotated by the humans.
Applying these metrics only requires a definition
of what is considered an “item” for each task.

• For evaluating the spans of event expressions
or time expressions, items were tuples of (be-
gin, end) character offsets. Thus, systems only
received credit for identifying events and times
with exactly the same character offsets as the
manually annotated ones.

• For evaluating the attributes of event expressions
or time expressions – Class, Contextual Modal-
ity, Degree, Polarity and Type – items were tu-
ples of (begin, end, value) where begin and end
are character offsets and value is the value that
was given to the relevant attribute. Thus, sys-
tems only received credit for an event (or time)
attribute if they both found an event (or time)
with the correct character offsets and then as-
signed the correct value for that attribute.

• For relations between events and the document
creation time, items were tuples of (begin, end,
value), just as if it were an event attribute. Thus,
systems only received credit if they found a
correct event and assigned the correct relation
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(BEFORE, OVERLAP, BEFORE-OVERLAP, or
AFTER) between that event and the document
creation time.

• For narrative container relations, items were tu-
ples of ((begin1, end1), (begin2, end2)), where
the begins and ends corresponded to the charac-
ter offsets of the events or times participating in
the relation. Thus, systems only received credit
for a narrative container relation if they found
both events/times and correctly assigned a CON-
TAINS relation between them.

For narrative container relations, the P and R defi-
nitions were modified to take into account temporal
closure, where additional relations are determinis-
tically inferred from other relations (e.g., A CON-
TAINS B and B CONTAINS C, so A CONTAINS

C):

P =
|S ∩ closure(H)|

|S| R =
|closure(S) ∩H|

|H|
Similar measures were used in prior work (UzZa-
man and Allen, 2011) and TempEval 2013 (Uz-
Zaman et al., 2013), following the intuition that
precision should measure the fraction of system-
predicted relations that can be verified from the
human annotations (either the original human anno-
tations or annotations inferred from those through
closure), and that recall should measure the fraction
of human-annotated relations that can be verified
from the system output (either the original sys-
tem predictions or predictions inferred from those
through closure).

5 Human Agreement

We also provide two types of human agreement
on the tasks, measured with the same evaluation
metrics as the systems:

ann-ann Inter-annotator agreement between the
two independent human annotators who anno-
tated each document. This is the most commonly
reported type of agreement, and often considered
to be an upper bound on system performance.

adj-ann Inter-annotator agreement between the
adjudicator and the two independent annotators.
This is usually a better bound on system perfor-
mance in adjudicated corpora, since the models
are trained on the adjudicated data, not on the
individual annotator data.

Only F1 is reported in these scenarios since pre-
cision and recall depend on the arbitrary choice
of one annotator as human (H) and the other as
system (S).

6 Baseline Systems

Two rule-based systems were used as baselines to
compare the participating systems against.

memorize For all tasks but the narrative container
task, a memorization baseline was used.

To train the model, all phrases annotated as ei-
ther events or times in the training data were
collected. All exact character matches for these
phrases in the training data were then examined,
and only phrases that were annotated as events or
times greater than 50% of the time were retained.
For each phrase, the most frequently annotated
type (event or time) and attribute values for in-
stances of that phrase were determined.

To predict with the model, the raw text of the
test data was searched for all exact character
matches of any of the memorized phrases, pre-
ferring longer phrases when multiple matches
overlapped. Wherever a phrase match was found,
an event or time with the memorized (most fre-
quent) attribute values was predicted.

closest For the narrative container task, a proxim-
ity baseline was used. Each time expression was
predicted to be a narrative container, containing
only the closest event expression to it in the text.

7 Participating Systems

11 teams submitted a total of 28 runs, 10 for the un-
supervised domain adaptation phase, and 18 for the
supervised domain adaptation phase. All participat-
ing systems trained some form of supervised clas-
sifiers, with common features including character
n-grams, words, part-of-speech tags, and Unified
Medical Language System (UMLS) concept types.
Below is a brief description of each participating
team, and a note if they performed any more elab-
orate domain adaptation than simply adding the
extra 30 brain cancer notes to their training data.

GUIR (MacAvaney et al., 2017) combined con-
ditional random fields, rules, and decision tree
ensembles, with features including character
n-grams, words, word shapes, word clusters,
word embeddings, part-of-speech tags, syntactic
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and dependency tree paths, semantic roles, and
UMLS concept types.

Hitachi (P R et al., 2017) combined conditional
random fields, rules, neural networks, and de-
cision tree ensembles, with features including
character n-grams, word n-grams, word shapes,
word embeddings, verb tense, section headers,
and sentence embeddings.

KULeuven-LIIR (Leeuwenberg and Moens,
2017) combined support vector machines and
structured perceptrons with features including
words and part-of-speech tags. For domain
adaptation, KULeuven-LIIR tried assigning
higher weight to the brain cancer training data,
and representing unknown words in the input
vocabulary.

LIMSI-COT (Tourille et al., 2017) combined re-
current neural networks with character and word
embeddings, and support vector machines with
features including words and part-of-speech tags.
For domain adaptation, LIMSI-COT tried disal-
lowing modification of pre-trained word embed-
dings, and representing unknown words in the
input vocabulary.

NTU-1 (Huang et al., 2017) combined support vec-
tor machines and conditional random fields with
features including word n-grams, part-of-speech
tags, word shapes, named entities, dependency
trees, and UMLS concept types.

ULISBOA (Lamurias et al., 2017) combined con-
ditional random fields and rules with features
including character n-grams, words, part-of-
speech tags, and UMLS concept types.

XJNLP (Long et al., 2017) combined rules, sup-
port vector machines, and recurrent and convolu-
tional neural networks, with features including
words, word embeddings, and verb tense.

Several other teams (WuHanNLP, UNICA, UTD,
and IIIT) also competed, but did not submit a sys-
tem description.

8 Evaluation Results

Tables 2 to 4 show the results of the evaluation. In
all tables, the best system score from each column
is in bold. Systems marked with † were submitted
after the competition deadline, and are thus not
considered part of the official evaluation.

time span time span + class
Team F1 P R F1 P R

Unsupervised domain adaptation
GUIR 0.57 0.61 0.53 0.51 0.55 0.47
KULeuven-LIIR 0.56 0.72 0.46 0.53 0.68 0.43
LIMSI-COT 0.51 0.42 0.66 0.49 0.40 0.63
ULISBOA 0.48 0.44 0.54 0.43 0.39 0.48
Hitachi 0.43 0.63 0.33 - - -
baseline 0.36 0.72 0.24 0.32 0.63 0.21
WuHanNLP 0.31 0.65 0.20 0.27 0.57 0.18

Supervised domain adaptation
GUIR 0.59 0.57 0.62 0.56 0.54 0.59
LIMSI-COT 0.58 0.51 0.67 0.55 0.49 0.64
NTU-1 0.58 0.58 0.58 0.54 0.54 0.54
KULeuven-LIIR 0.56 0.57 0.55 0.54 0.55 0.53
ULISBOA 0.55 0.52 0.60 0.52 0.48 0.56
UTD 0.54 0.56 0.52 0.44 0.46 0.43
Hitachi 0.51 0.53 0.48 - - -
WuHanNLP 0.43 0.45 0.41 0.40 0.42 0.38
XJNLP† 0.41 0.33 0.52 0.35 0.29 0.45
UNICA 0.37 0.31 0.45 0.31 0.26 0.38
baseline 0.35 0.53 0.26 0.32 0.49 0.24
IIIT 0.31 0.39 0.25 0.19 0.24 0.16

Annotator agreement
ann-ann 0.81 - - 0.79 - -
adj-ann 0.86 - - 0.85 - -

Table 2: System performance and annotator agree-
ment on TIMEX3 tasks: identifying the time ex-
pression’s span (character offsets) and class (DATE,
TIME, DURATION, QUANTIFIER, PREPOSTEXP

or SET).

8.1 Time Expressions

Table 2 shows results on the time expression tasks.
The GUIR system had the top F1 in almost all time
expression tasks across both unsupervised and su-
pervised domain adaptation phases, achieving F1s
between 0.51 and 0.59. Compared to human agree-
ment, the best systems were more than 0.20 lower
than the inter-annotator agreement (and further, of
course, from the annotator-adjudicator agreement).

In Clinical TempEval 2016, for comparison,
when models were both trained and tested on colon
cancer notes, the top system achieved 0.80 F1 for
time spans, and 0.77 F1 for time types. This sug-
gests that a time expression system trained on one
clinical condition (e.g., colon cancer) can expect
a 20+ point drop when tested on another clinical
condition (e.g., brain cancer). Providing 30 anno-
tated notes in the target domain narrowed that gap
by only a few points.

The drop in performance can probably be partly
attributed to differences in time expressions across
the two corpora. For example, post-op is 26.5 times
more common in brain cancer (212 occurrences in
brain cancer data vs. 27 occurrences in colon can-
cer data), overnight is 13 times more common (148
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event span event span + modality event span + degree event span + polarity event span + type
Team F1 P R F1 P R F1 P R F1 P R F1 P R

Unsupervised domain adaptation
LIMSI-COT 0.72 0.62 0.84 0.64 0.55 0.75 0.71 0.62 0.83 0.69 0.60 0.82 0.70 0.61 0.82
GUIR 0.71 0.64 0.80 0.56 0.50 0.64 0.68 0.61 0.77 0.65 0.59 0.74 0.68 0.61 0.76
KULeuven-LIIR 0.68 0.70 0.67 0.62 0.63 0.61 0.67 0.69 0.66 0.67 0.68 0.65 0.66 0.67 0.65
ULISBOA 0.68 0.62 0.77 0.61 0.55 0.68 0.68 0.61 0.76 0.66 0.60 0.74 0.66 0.60 0.74
Hitachi 0.68 0.67 0.69 - - - - - - - - - - - -
baseline 0.63 0.65 0.61 0.55 0.57 0.54 0.62 0.64 0.60 0.58 0.60 0.56 0.60 0.62 0.59
WuHanNLP 0.62 0.59 0.66 0.55 0.52 0.58 0.61 0.58 0.65 0.6 0.57 0.63 0.60 0.57 0.63

Supervised domain adaptation
LIMSI-COT 0.76 0.69 0.85 0.69 0.63 0.78 0.75 0.68 0.84 0.75 0.68 0.83 0.75 0.68 0.83
GUIR 0.74 0.68 0.82 0.66 0.60 0.72 0.73 0.67 0.80 0.58 0.54 0.64 0.72 0.66 0.79
NTU-1 0.73 0.62 0.87 0.63 0.54 0.75 0.72 0.62 0.86 0.70 0.60 0.84 0.70 0.60 0.85
ULISBOA 0.73 0.65 0.83 0.64 0.57 0.73 0.72 0.64 0.82 0.71 0.63 0.81 0.71 0.63 0.80
KULeuven-LIIR 0.72 0.67 0.78 0.66 0.61 0.71 0.71 0.66 0.77 0.71 0.66 0.76 0.70 0.65 0.76
Hitachi 0.71 0.67 0.76 - - - - - - - - - - - -
baseline 0.70 0.67 0.74 0.62 0.59 0.65 0.69 0.66 0.73 0.66 0.62 0.69 0.68 0.65 0.72
UTD 0.66 0.62 0.71 0.57 0.53 0.61 - - - - - - - - -
WuHanNLP 0.65 0.59 0.72 0.58 0.53 0.64 0.64 0.58 0.71 0.63 0.57 0.70 0.63 0.57 0.70
IIIT 0.62 0.69 0.56 0.51 0.57 0.47 0.61 0.67 0.55 0.58 0.64 0.52 0.59 0.66 0.54
XJNLP† 0.61 0.55 0.68 0.51 0.46 0.57 0.59 0.54 0.67 0.54 0.49 0.61 0.58 0.52 0.66
UNICA 0.50 0.39 0.71 0.43 0.34 0.61 0.49 0.38 0.70 0.47 0.37 0.66 0.47 0.37 0.67

Annotator agreement
ann-ann 0.79 - - 0.72 - - 0.78 - - 0.78 - - 0.76 - -
adj-ann 0.87 - - 0.84 - - 0.86 - - 0.86 - - 0.85 - -

Table 3: System performance and annotator agreement on EVENT tasks: identifying the event expression’s
span (character offsets), contextual modality (ACTUAL, HYPOTHETICAL, HEDGED or GENERIC), degree
(MOST, LITTLE or N/A), polarity (POS or NEG) and type (ASPECTUAL, EVIDENTIAL or N/A).

in brain vs. 11 in colon), and intraoperative is 2.3
times more common (156 in brain vs. 68 in colon).
Formatting is also different across the corpora. For
example, POST-OP (all capitals) occurs 161 times
in all the brain cancer data, but never occurs with
this capitalization in any of the colon cancer data.

8.2 Event Expressions

Table 3 shows results on the event expression tasks.
The LIMSI-COT system achieved the best F1 on
all event expression tasks for both the unsupervised
and supervised domain adaptation phases, achiev-
ing around 0.70 F1 for most subtasks in the unsu-
pervised setting, and around 0.75 F1 in the super-
vised setting. Compared to human agreement, the
LIMSI-COT system ranged between 0.06 and 0.09
below the inter-annotator agreement.

In Clinical TempEval 2016, for comparison, the
top system achieved F1s of 0.92, 0.87, 0.91, 0.90,
and 0.89 for event spans, modality, degree, polarity,
and type, respectively. This suggests that, much
like for time expressions, an event expression sys-
tem trained on one clinical condition (e.g., colon
cancer) can expect a 20+ point drop when tested
on another clinical condition (e.g., brain cancer).
Providing 30 annotated notes in the target domain
again narrows the gap by only a few points.

The drop in performance can again probably be
attributed to differences across the two corpora.
Even more so than time expressions, event expres-
sions for brain cancer are very different from event
expressions for colon cancer. For example, cran-
iotomy, glioma, glioblastoma, oligoastrocytoma,
aphasia, and temozolomide all occur as events more
than 150 times in the brain cancer data, but do not
occur as events even once in the colon cancer data.

8.3 Temporal Relations

Table 4 shows performance on the temporal rela-
tion tasks. The LIMSI-COT system had the top F1
in almost all of the temporal relation tasks in both
the unsupervised and supervised domain adapta-
tion settings, achieving above 0.50 F1 in linking
events to the document creation time, and above
0.30 F1 for linking events to their narrative con-
tainers. Compared to humans, the LIMSI-COT
system was more than 0.30 below inter-annotator
agreement for narrative container relations, but
above inter-annotator agreement (though still be-
low annotator-adjudicator agreement) on document
time relations when using the additional target do-
main (brain cancer) training data.

In Clinical TempEval 2016, for comparison, the
top system achieved F1s of 0.76 for document time
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To document time Narrative containers
F1 P R F1 P R

Unsupervised domain adaptation
LIMSI-COT 0.51 0.44 0.60 0.33 0.28 0.40
KULeuven-LIIR 0.49 0.50 0.48 0.32 0.33 0.30
GUIR 0.40 0.36 0.45 0.34 0.52 0.25
Hitachi 0.45 0.44 0.45 0.23 0.23 0.22
baseline 0.38 0.39 0.37 0.14 0.39 0.08
ULISBOA 0.41 0.37 0.45 - - -
WuHanNLP 0.41 0.39 0.43 - - -

Supervised domain adaptation
LIMSI-COT 0.59 0.53 0.66 0.32 0.25 0.43
KULeuven-LIIR 0.56 0.52 0.61 0.28 0.23 0.35
GUIR 0.50 0.45 0.55 0.25 0.59 0.16
NTU-1 0.49 0.42 0.59 0.26 0.20 0.37
Hitachi 0.52 0.49 0.55 0.16 0.11 0.27
baseline 0.46 0.43 0.48 0.14 0.27 0.09
WuHanNLP 0.46 0.42 0.51 0.12 0.16 0.09
UTD 0.45 0.42 0.48 0.11 0.08 0.16
ULISBOA 0.44 0.39 0.51 - - -
IIIT 0.36 0.40 0.33 0.05 0.03 0.08
UNICA 0.20 0.15 0.28 - - -

Annotator agreement
ann-ann 0.52 - - 0.66 - -
adj-ann 0.71 - - 0.80 - -

Table 4: System performance and annotator agree-
ment on temporal relation tasks: identifying rela-
tions between events and the document creation
time (DOCTIMEREL), and identifying narrative
container relations (CONTAINS).

relations, and 0.48 for narrative containers. Again
we see a major drop when training on one condition
(e.g., colon cancer) and testing on another (e.g.,
brain cancer): a 20+ point drop for document time
relations, and around a 15 point drop for narrative
containers.

9 Discussion

Clinical TempEval 2017 showed that developing
clinical timeline extraction tools that generalize
across domains is still a challenging problem. Al-
most across the board, we saw 20+ point drops in
performance when systems were trained on one
domain (colon cancer) and tested on another (brain
cancer), as compared to systems that were trained
and tested on a single domain (colon cancer, as in
Clinical TempEval 2016). And across the board,
providing a small amount of target domain (brain
cancer) training data narrowed that gap only by a
couple of points. This is an important finding be-
cause it stresses how much work remains to build
robust clinical information extraction tools that are
useful across a wide range of medical applications.

Though the focus in Clinical TempEval 2017
was on domain adaptation, only a small number of
fairly simple domain adaptation techniques were

applied by participants, probably because produc-
ing even an initial system for all the Clinical Temp-
Eval sub-tasks is already a significant effort. Two
participants (LIMSI-COT and KULeuven-LIIR,
two of the top ranking systems) included special
handling of unknown words to try to increase gen-
eralization power. Other approaches attempted by
participants included giving a heavier weight to
the target domain (brain cancer) training data, and
using pre-trained domain independent word em-
beddings. A wide variety of more sophisticated
domain adaptation techniques exist that were not
applied by participants, and we expect that some
of these will make future progress in reducing the
cross-domain performance degradation that was
observed in Clinical TempEval 2017.
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