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Abstract 

This paper describes our approach for 

SemEval-2017 Task 8. We aim at detecting 

the stance of tweets and determining the 

veracity of the given rumor. We utilize a 

convolutional neural network for short text 

categorization using multiple filter sizes. 

Our approach beats the baseline classifiers 

on different event data with good F1 

scores. The best of our submitted runs 

achieves rank 1
st
 among all scores on sub-

task B. 

1 Introduction 

Rumors in social networks are widely noticed due 

to the broad success of online social media. Un-

confirmed rumors usually spark discussion before 

being verified. These have created cost for society 

and panic among people. Rather than relying on 

human observers to identify trending rumors, it 

would be helpful to detect them automatically and 

limit the damage immediately. However, identify-

ing false rumors early is a hard task without suffi-

cient evidence such as responses, retweet and fact 

checking sites. Instead of propagation structure, 

context-level patterns are more obvious and useful 

for the identification of rumors at this stage – in  

particular, observing the different patterns of 

stances amongst participants (Qazvinian et al., 

2011). 

Recent research has proposed a 4-way classifi-

cation task to encompass all the different kinds of 

reactions to rumors (Arkaitz et al., 2016). A sche-

ma of classifications including supporting, deny-

ing, querying and commenting (SDQC) is applied 

in SemEval2017 Task 8. 

In this paper, we describe a system for stance 

classification and rumor verification in tweets. For 

the first task, we are given tree-structured conver-

sations, where replies are triggered by a source 

tweet. We need to categorize the replies into one 

of the SDQC categories by reply-source pairs. The 

second task is about rumor verification. Our sys-

tem is for the closed variant – which means the 

veracity of a rumor will have to be predicted sole-

ly without external data.  

It is a challenging NLP task. Statements con-

taining sarcasm, irony and metaphor often need 

personal experience to be able to infer their 

broader context (Kreuz and Caucci, 2007). Fur-

thermore, lots of background knowledge is re-

quired to do the fact checking (Reichel and 

Lendvai, 2016). 

In this paper, we develop convolutional neural 

network models for both tasks. Our system relies 

on a supervised classifier, using text features of 

different word representation methods such as 

learning word embedding through training and 

pre-trained word embedding model like GloVe 

(Pennington et al., 2014). The experiment section 

presents our results and discusses the performance 

of our work. 

2 Related Work  

Rumor verification from online social media has 

developed into a popular subject in recent years. 

The most common features were proposed by 

Castillo (2011) who classified useful features into 

 

 

 

 

 

 

 

 

 

 

465



 

   

four categories: message-based features, user-

based features, topic-based features, and propaga-

tion-based features. However, this approach is 

limited because of the data skew problem when 

false rumors are less common. Thus, most exist-

ing approaches attempt to classify truthfulness by 

utilizing information beyond the content of the 

posts – propagation structure, for example. Ke Wu 

(2015) et al., proposed a novel message propaga-

tion pattern based on the users who transmit this 

message. But most of these features are available 

only when the rumors have been responded to by 

many users. Our task, on the other hand, is to do 

the initial classification on content features which 

are available much earlier. 

3  System Overview 

Our system employs a convolutional neural net-

work mainly inspired by Kim (2014). We chose 

models by testing on LOO (Leave One Out) vali-

dation performance. LOO can be simply ex-

plained as that we test on each conversation thread 

by retraining models on the other threads. In the 

following section, our CNN Tweet Model is brief-

ly explained.  

3.1 Data Preprocessing 

Before applying the models, we need to do some 

transforms of the irregular input text. At first, we 

remove URLs and username with ‘@’ tags that do 

not contribute to sentiment analysis. In this case, 

URLs and usernames are considered as noise 

without external data. Furthermore, we convert all 

letters to lower case. Besides removal, it is worth 

mentioning that we leave important clues such as 

hashtags and some special characters. Question 

marks and exclamation marks, for example, have 

proven to be helpful (Zhao, 2015). 

3.2 Convolutional Model 

There are two steps for the process of encoding 

tweets into matrices that are then passed to the in-

put layer. This model is illustrated in Figure 1. 

First, we use word embedding to convert each 

word in the tweet into a vector. We randomly ini-

tialize the word embedding matrix. Each row of 

this matrix is a vector that represents a word in the 

vocabulary. Then we learn the embedding weights 

during the training process.  Second, we concate-

nate these word vectors to produce a matrix repre-

senting the sentence. In the matrix, each row 

represents one word in the tweet as follows: 

 𝑡𝑚 = [

𝑤𝑣1

𝑤𝑣2

⋮
𝑤𝑣𝑛

]

𝑛×𝑑

 (1) 

Where 𝑡𝑚 is a word matrix formed by the concat-

enation of each word vector. 

 

In the convolutional layer, we use tm as input 

and select a window size 𝑦 to slide over the ma-

trix. To extract local features in the region of the 

window, a filter matrix 𝑓𝑚 ∈ 𝑅𝑦×𝑑  is used to 

produce element-wise multiplication and non-

linear operations on the matrix values in the win-

dow at every position. The following is an exam-

ple of this operation: 

 𝑒𝑙𝑖 = 𝑔 (𝑓𝑚 ∙ [

𝑤𝑣𝑖

⋮
𝑤𝑣𝑖+𝑦−1

] + 𝑏)   (2) 

 

Where 𝑓𝑚 is the filter matrix. The values of the 

filter matrix will be learned by the CNN from the 

training process. 𝑏 is the bias term, 𝑔 is the non-

linear function, and 𝑒𝑙𝑖  is an element of a local 

feature vector. After we slide the window through 

the whole matrix, we get a local feature vector of 

the input tweet as: 

 𝑓𝑣 = [𝑒𝑙1, 𝑒𝑙2, ⋯ , 𝑒𝑙𝑛−𝑦+1] (3) 

Where 𝑓𝑣 ∈ 𝑅𝑛−𝑦+1 is a local feature vector with 

n-y+1 elements.  

For the purpose of dealing with continuous n 

words which may represent special meaning in 

NLP (e.g. “Boston Globe”), we use multiple win-

dow sizes to produce different feature vectors. 

Thus, the idea of a different window size applied 

to capturing features is similar to n-grams. Mean-

while, we use different filter matrices to extract 

Figure 1: Architecture of Word-Embedding Con-

volutional Model 

  

466



 

   

different local features of the tweet in each win-

dow. 

A pooling layer is used for simplifying the in-

formation of the output from the convolutional 

layer. We extract the maximum value from each 

local feature vector to form a condensed represen-

tation vector. For every local feature vector, only 

the most important feature is extracted and noise 

is ignored. After the max-pooling operation, we 

can concatenate all maximum values of each col-

umn as follows: 

𝑣𝑡 = [
𝑚𝑎𝑥(𝑓𝑣1)

⋮
𝑚𝑎𝑥(𝑓𝑣𝑚)

] (4) 

Where 𝑣𝑡 is the global feature vector representing 

the tweet. 

Through the pooling layer, if we use the same 

window size and filter matrix on different tweets, 

we can make sure the global feature size is fixed. 

For classification, we feed the global feature 

vectors of the tweet into a fully connected layer to 

calculate the probability distribution. A softmax 

activation function is applied as follows: 

 𝑃(𝑦 = 𝑖|𝑣𝑡 , 𝑏) =
𝑒𝑤𝑇

𝑖𝑣𝑡+𝑏𝑖

∑ 𝑒
𝑤𝑇

𝑖′𝑣𝑡+𝑏
𝑖′

𝑖′=1

 (5) 

Where 𝑣𝑡 is the input vector, 𝑤𝑇
𝑖′  is the 𝑖′-th col-

umn of weight matrix 𝑊. With the probabilities 

over the four classes, we take the class with the 

maximum value as the label for the given input 

tweet. 

4  Tasks and Model Training 

During the training phase, our CNN model auto-

matically learns the values of its filters based on 

the task. 

In task A, the tweets are classified into four cat-

egories: supporting, denying, querying and com-

menting. We defined the ground truth vector p as a 

one-hot vector.  The parameter d used in the word 

embedding is 128. The number of filters in the 

convolutional layers is 128. The probability of 

dropout is set to 0.5. Adam Optimization algo-

rithm is used to optimize our network’s loss func-

tion. Moreover, there are three filter region sizes 

in our system: 2, 3 and 4, each of which has 2 fil-

ters.  

In order to deal with the imbalance of classes in 

the data, balanced mini-batching was applied. In 

the statistics, more than 64% of the instances be-

long to the commenting class. We chose 16 in-

stances with each class from training set random-

ly, which means that there are 64 instances in a 

batch.  

A voting scheme is applied to decrease the un-

certainty of training on randomly selected sam-

ples. We trained 5 models to predict the same test-

ing data and took a vote for the final prediction. 

By performing training multiple times inde-

pendently we achieved more robust results. 

 In subtask B, most of the parameter settings were 

the same as in Task A. Because the output classes 

are rumor and non-rumor, we discard the label 

“unverified”. In addition, we use the probability in 

section 3.2 to define the credibility of our answer 

c. The credibility in the interval [0, 1] is normal-

ized as: 

𝑐 =
max(𝑃(𝑦=0,1|𝑣𝑡,𝑏))

∑ 𝑃(𝑦=𝑖|𝑣𝑡,𝑏)𝑖=0,1
 (6) 

5  Evaluation 

We conduct experiments using the rumor datasets 

annotated for stance (Zubiaga et al., 2016). The 

statistics of the datasets are shown in Table 1. For 

subtask B, conversation threads are not available 

for the participants and the use of external data is 

forbidden on the closed variant. 

 

 

5.1 Baselines 

We compare our result with Lukasik’s (2016) in 

Table 2. We follow their LOO settings and test on 

the same dataset. The report includes accuracy 

(Acc) and macro average of F1 scores across all 

labels (F1) from Lukasik’s baseline. 

The results show our deep learning model is the 

best method in terms of F1 score. Especially, the 

CNN model beats all the other methods. While the 

RNN method is not performing well on this task. 

Another issue is the GloVe embedding – the pre-

training model sometimes lacks some of the vo-

cabulary from new events. Nevertheless, GloVe is 

still competitive with the CNN method for the 

Ferguson event. 

Subtask A 
Stance Support Deny Query Comment 

Training 841(20%) 333(8%) 330(8%) 2734(65%) 

Testing 94(9%) 71(7%) 106(10%) 778(74%) 

Subtask B 

Veracity True False unverified 

Training 127(47%) 50(18%) 95(35%) 

Testing 8(40%) 12(60%) 0 

Table 1: Statistics of datasets for subtask A and B. 
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5.2 Window Sizes for Filters 

Table 3 lists the results of using different window 

sizes for the filters in the tweet encoding process. 

We set different window sizes to observe the im-

pact. The experiment was performed with the 

same settings as in section 5.1 for the Ottawa 

event. We obtain the best performance when the 

window size combination is (3, 4, 5). Different 

window sizes 2, 3 and 4 correspond to the encod-

ing for the bigrams, trigrams and four-grams of 

the tweets respectively. We can see that the per-

formance decrease slightly with the window size 

increases. That is, insufficient grams can lose 

some features while too many grams can bring 

noise. 

5.3 Official Results
1
 

Our submission results to the subtask A achieve an 

accuracy of 0.701. The statistical details of each 

class are given in Table 4. We notice that the 

comment stance is the easiest to detect, since they 

take a large part of the data. The number of query 

stances are similar to support and deny, while it 

has much better precision and recall because the 

features of queries are more obvious. Likewise, 

there are some negative words in the deny stance 

                                                      
1 Results and task detail can be found on 

http://alt.qcri.org/semeval2017/task8/ 

 
as features. However, it is challenging to extract 

features of supporting which results in a poorer 

performance.  

The rank of subtask B is summarized in Table 

5. As we can see our model performs best among 

the official scores. Our code is available on github 

for anyone who has interest in further explora-

tion
2
. 

6 Conclusion 

We develop a convolutional neural network sys-

tem for detecting twitter stance and rumor veraci-

ty determination in this paper. Compared with the 

baseline approach, our system obtains good re-

sults on stance detection. In addition, on the test 

set of SemEval2017 Task8B, we ranked 2nd in the 

official evaluation run. 
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