
Proceedings of the 11th International Workshop on Semantic Evaluations (SemEval-2017), pages 465–469,
Vancouver, Canada, August 3 - 4, 2017. c©2017 Association for Computational Linguistics

 IKM at SemEval-2017 Task 8: Convolutional Neural Networks for

Stance Detection and Rumor Verification

Yi-Chin Chen, Zhao-Yang Liu, Hung-Yu Kao

Department of Computer Science and Information Engineering

National Cheng Kung University

Tainan, Taiwan, ROC

{kimberycc,kjes89011}@gmail.com

hykao@mail.ncku.edu.tw

Abstract

This paper describes our approach for

SemEval-2017 Task 8. We aim at detecting

the stance of tweets and determining the

veracity of the given rumor. We utilize a

convolutional neural network for short text

categorization using multiple filter sizes.

Our approach beats the baseline classifiers

on different event data with good F1

scores. The best of our submitted runs

achieves rank 1
st
 among all scores on sub-

task B.

1 Introduction

Rumors in social networks are widely noticed due

to the broad success of online social media. Un-

confirmed rumors usually spark discussion before

being verified. These have created cost for society

and panic among people. Rather than relying on

human observers to identify trending rumors, it

would be helpful to detect them automatically and

limit the damage immediately. However, identify-

ing false rumors early is a hard task without suffi-

cient evidence such as responses, retweet and fact

checking sites. Instead of propagation structure,

context-level patterns are more obvious and useful

for the identification of rumors at this stage – in

particular, observing the different patterns of

stances amongst participants (Qazvinian et al.,

2011).

Recent research has proposed a 4-way classifi-

cation task to encompass all the different kinds of

reactions to rumors (Arkaitz et al., 2016). A sche-

ma of classifications including supporting, deny-

ing, querying and commenting (SDQC) is applied

in SemEval2017 Task 8.

In this paper, we describe a system for stance

classification and rumor verification in tweets. For

the first task, we are given tree-structured conver-

sations, where replies are triggered by a source

tweet. We need to categorize the replies into one

of the SDQC categories by reply-source pairs. The

second task is about rumor verification. Our sys-

tem is for the closed variant – which means the

veracity of a rumor will have to be predicted sole-

ly without external data.

It is a challenging NLP task. Statements con-

taining sarcasm, irony and metaphor often need

personal experience to be able to infer their

broader context (Kreuz and Caucci, 2007). Fur-

thermore, lots of background knowledge is re-

quired to do the fact checking (Reichel and

Lendvai, 2016).

In this paper, we develop convolutional neural

network models for both tasks. Our system relies

on a supervised classifier, using text features of

different word representation methods such as

learning word embedding through training and

pre-trained word embedding model like GloVe

(Pennington et al., 2014). The experiment section

presents our results and discusses the performance

of our work.

2 Related Work

Rumor verification from online social media has

developed into a popular subject in recent years.

The most common features were proposed by

Castillo (2011) who classified useful features into

465

four categories: message-based features, user-

based features, topic-based features, and propaga-

tion-based features. However, this approach is

limited because of the data skew problem when

false rumors are less common. Thus, most exist-

ing approaches attempt to classify truthfulness by

utilizing information beyond the content of the

posts – propagation structure, for example. Ke Wu

(2015) et al., proposed a novel message propaga-

tion pattern based on the users who transmit this

message. But most of these features are available

only when the rumors have been responded to by

many users. Our task, on the other hand, is to do

the initial classification on content features which

are available much earlier.

3 System Overview

Our system employs a convolutional neural net-

work mainly inspired by Kim (2014). We chose

models by testing on LOO (Leave One Out) vali-

dation performance. LOO can be simply ex-

plained as that we test on each conversation thread

by retraining models on the other threads. In the

following section, our CNN Tweet Model is brief-

ly explained.

3.1 Data Preprocessing

Before applying the models, we need to do some

transforms of the irregular input text. At first, we

remove URLs and username with ‘@’ tags that do

not contribute to sentiment analysis. In this case,

URLs and usernames are considered as noise

without external data. Furthermore, we convert all

letters to lower case. Besides removal, it is worth

mentioning that we leave important clues such as

hashtags and some special characters. Question

marks and exclamation marks, for example, have

proven to be helpful (Zhao, 2015).

3.2 Convolutional Model

There are two steps for the process of encoding

tweets into matrices that are then passed to the in-

put layer. This model is illustrated in Figure 1.

First, we use word embedding to convert each

word in the tweet into a vector. We randomly ini-

tialize the word embedding matrix. Each row of

this matrix is a vector that represents a word in the

vocabulary. Then we learn the embedding weights

during the training process. Second, we concate-

nate these word vectors to produce a matrix repre-

senting the sentence. In the matrix, each row

represents one word in the tweet as follows:

 𝑡𝑚 = [

𝑤𝑣1

𝑤𝑣2

⋮
𝑤𝑣𝑛

]

𝑛×𝑑

 (1)

Where 𝑡𝑚 is a word matrix formed by the concat-

enation of each word vector.

In the convolutional layer, we use tm as input

and select a window size 𝑦 to slide over the ma-

trix. To extract local features in the region of the

window, a filter matrix 𝑓𝑚 ∈ 𝑅𝑦×𝑑 is used to

produce element-wise multiplication and non-

linear operations on the matrix values in the win-

dow at every position. The following is an exam-

ple of this operation:

 𝑒𝑙𝑖 = 𝑔 (𝑓𝑚 ∙ [

𝑤𝑣𝑖

⋮
𝑤𝑣𝑖+𝑦−1

] + 𝑏) (2)

Where 𝑓𝑚 is the filter matrix. The values of the

filter matrix will be learned by the CNN from the

training process. 𝑏 is the bias term, 𝑔 is the non-

linear function, and 𝑒𝑙𝑖 is an element of a local

feature vector. After we slide the window through

the whole matrix, we get a local feature vector of

the input tweet as:

 𝑓𝑣 = [𝑒𝑙1, 𝑒𝑙2, ⋯ , 𝑒𝑙𝑛−𝑦+1] (3)

Where 𝑓𝑣 ∈ 𝑅𝑛−𝑦+1 is a local feature vector with

n-y+1 elements.

For the purpose of dealing with continuous n

words which may represent special meaning in

NLP (e.g. “Boston Globe”), we use multiple win-

dow sizes to produce different feature vectors.

Thus, the idea of a different window size applied

to capturing features is similar to n-grams. Mean-

while, we use different filter matrices to extract

Figure 1: Architecture of Word-Embedding Con-

volutional Model

466

different local features of the tweet in each win-

dow.

A pooling layer is used for simplifying the in-

formation of the output from the convolutional

layer. We extract the maximum value from each

local feature vector to form a condensed represen-

tation vector. For every local feature vector, only

the most important feature is extracted and noise

is ignored. After the max-pooling operation, we

can concatenate all maximum values of each col-

umn as follows:

𝑣𝑡 = [
𝑚𝑎𝑥(𝑓𝑣1)

⋮
𝑚𝑎𝑥(𝑓𝑣𝑚)

] (4)

Where 𝑣𝑡 is the global feature vector representing

the tweet.

Through the pooling layer, if we use the same

window size and filter matrix on different tweets,

we can make sure the global feature size is fixed.

For classification, we feed the global feature

vectors of the tweet into a fully connected layer to

calculate the probability distribution. A softmax

activation function is applied as follows:

 𝑃(𝑦 = 𝑖|𝑣𝑡 , 𝑏) =
𝑒𝑤𝑇

𝑖𝑣𝑡+𝑏𝑖

∑ 𝑒
𝑤𝑇

𝑖′𝑣𝑡+𝑏
𝑖′

𝑖′=1

 (5)

Where 𝑣𝑡 is the input vector, 𝑤𝑇
𝑖′ is the 𝑖′-th col-

umn of weight matrix 𝑊. With the probabilities

over the four classes, we take the class with the

maximum value as the label for the given input

tweet.

4 Tasks and Model Training

During the training phase, our CNN model auto-

matically learns the values of its filters based on

the task.

In task A, the tweets are classified into four cat-

egories: supporting, denying, querying and com-

menting. We defined the ground truth vector p as a

one-hot vector. The parameter d used in the word

embedding is 128. The number of filters in the

convolutional layers is 128. The probability of

dropout is set to 0.5. Adam Optimization algo-

rithm is used to optimize our network’s loss func-

tion. Moreover, there are three filter region sizes

in our system: 2, 3 and 4, each of which has 2 fil-

ters.

In order to deal with the imbalance of classes in

the data, balanced mini-batching was applied. In

the statistics, more than 64% of the instances be-

long to the commenting class. We chose 16 in-

stances with each class from training set random-

ly, which means that there are 64 instances in a

batch.

A voting scheme is applied to decrease the un-

certainty of training on randomly selected sam-

ples. We trained 5 models to predict the same test-

ing data and took a vote for the final prediction.

By performing training multiple times inde-

pendently we achieved more robust results.

 In subtask B, most of the parameter settings were

the same as in Task A. Because the output classes

are rumor and non-rumor, we discard the label

“unverified”. In addition, we use the probability in

section 3.2 to define the credibility of our answer

c. The credibility in the interval [0, 1] is normal-

ized as:

𝑐 =
max(𝑃(𝑦=0,1|𝑣𝑡,𝑏))

∑ 𝑃(𝑦=𝑖|𝑣𝑡,𝑏)𝑖=0,1
 (6)

5 Evaluation

We conduct experiments using the rumor datasets

annotated for stance (Zubiaga et al., 2016). The

statistics of the datasets are shown in Table 1. For

subtask B, conversation threads are not available

for the participants and the use of external data is

forbidden on the closed variant.

5.1 Baselines

We compare our result with Lukasik’s (2016) in

Table 2. We follow their LOO settings and test on

the same dataset. The report includes accuracy

(Acc) and macro average of F1 scores across all

labels (F1) from Lukasik’s baseline.

The results show our deep learning model is the

best method in terms of F1 score. Especially, the

CNN model beats all the other methods. While the

RNN method is not performing well on this task.

Another issue is the GloVe embedding – the pre-

training model sometimes lacks some of the vo-

cabulary from new events. Nevertheless, GloVe is

still competitive with the CNN method for the

Ferguson event.

Subtask A
Stance Support Deny Query Comment

Training 841(20%) 333(8%) 330(8%) 2734(65%)

Testing 94(9%) 71(7%) 106(10%) 778(74%)

Subtask B

Veracity True False unverified

Training 127(47%) 50(18%) 95(35%)

Testing 8(40%) 12(60%) 0

Table 1: Statistics of datasets for subtask A and B.

467

5.2 Window Sizes for Filters

Table 3 lists the results of using different window

sizes for the filters in the tweet encoding process.

We set different window sizes to observe the im-

pact. The experiment was performed with the

same settings as in section 5.1 for the Ottawa

event. We obtain the best performance when the

window size combination is (3, 4, 5). Different

window sizes 2, 3 and 4 correspond to the encod-

ing for the bigrams, trigrams and four-grams of

the tweets respectively. We can see that the per-

formance decrease slightly with the window size

increases. That is, insufficient grams can lose

some features while too many grams can bring

noise.

5.3 Official Results
1

Our submission results to the subtask A achieve an

accuracy of 0.701. The statistical details of each

class are given in Table 4. We notice that the

comment stance is the easiest to detect, since they

take a large part of the data. The number of query

stances are similar to support and deny, while it

has much better precision and recall because the

features of queries are more obvious. Likewise,

there are some negative words in the deny stance

1 Results and task detail can be found on

http://alt.qcri.org/semeval2017/task8/

as features. However, it is challenging to extract

features of supporting which results in a poorer

performance.

The rank of subtask B is summarized in Table

5. As we can see our model performs best among

the official scores. Our code is available on github

for anyone who has interest in further explora-

tion
2
.

6 Conclusion

We develop a convolutional neural network sys-

tem for detecting twitter stance and rumor veraci-

ty determination in this paper. Compared with the

baseline approach, our system obtains good re-

sults on stance detection. In addition, on the test

set of SemEval2017 Task8B, we ranked 2nd in the

official evaluation run.

Reference

Castillo, Carlos, Marcelo Mendoza, and Barbara Pob-

lete. "Information credibility on twitter. " Proceed-

ings of the 20th international conference on World

wide web. ACM, 2011.

Wu Ke, Song Yang, and Kenny Q. Zhu. "False rumors

detection on sina weibo by propagation struc-

tures." Data Engineering (ICDE), 2015 IEEE 31st

International Conference on. IEEE, 2015.

Yoon Kim. "Convolutional neural networks for sen-

tence classification." arXiv preprint

arXiv:1408.5882 (2014).

Lukasik, Michal, Srijith, P.K, Vu, Duy, Bontcheva,

Kalina, Zubiaga, Arkaitz and Cohn. "Hawkes pro-

cesses for continuous time sequence classification:

an application to rumor stance classification in

2 https://github.com/kimber-chen/Twitter-stance-

classification-by-TensorFlow

Event Ottawa Ferguson

Acc F1 Acc F1

GP 62.28 42.41 64.31 32.9

Lang. model 53.2 42.66 49.56 34.35

NB 61.76 40.64 62.05 31.29

HP Approx. 67.77 32.29 68.44 25.99

HP Grad. 63.43 42.4 63.23 33.14

CNN 61.74 44.9 62.31 36.49

CNN(GloVe) 59.61 38.87 63.03 39.48

RNN(GloVe) 52.49 38.66 51.49 32.52

Table 2: Accuracy and F1 scores for different

methods across datasets. The upper lines of the re-

sults are our baseline.

Window
Sizes

Precision Recall F1

3 0.39 0.42 0.40

3,4 0.43 0.42 0.43

2,3,4 0.43 0.40 0.42

3,4,5 0.45 0.45 0.45

2,3,4,5 0.44 0.45 0.44

Table 3: results of using different window sizes.

Stance Precision Recall Accuracy

Support 0.19 0.20 0.20

Deny 0.31 0.07 0.07

Query 0.58 0.45 0.45

Comment 0.78 0.85 0.85

Table 4: Result on test data for subtask A.

Team Score RMSE

DFKI DKT 0.393 0.845

ECNU 0.464 0.736

IITP 0.286 0.807

IKM 0.536 0.763

NileTMRG 0.536 0.672

Table 5: Rank on test data for subtask B.

468

twitter." Proceedings of 54th Annual Meeting of

the Association for Computational Linguistics. As-

sociation for Computational Linguistics, 2016.

Jeffrey Pennington, Richard Socher, and Christopher

D Manning. 2014. Glove: Global vectors for word

representation. In EMNLP, volume 14, pages

1532–1543.

Vahed Qazvinian, Emily Rosengren, Dragomir R.

Radev, and Qiaozhu Mei. 2011. Rumor has it:

Identifying misinformation in microblogs. In Pro-

ceedings of the Conference on Empirical Methods

in Natural Language Processing, EMNLP ’11,

pages 1589–1599.

Kreuz, Roger J., and Gina M. Caucci. "Lexical influ-

ences on the perception of sarcasm." Proceedings

of the Workshop on computational approaches to

Figurative Language. Association for Computa-

tional Linguistics, 2007.

Reichel, Uwe D., and Piroska Lendvai. "Veracity

computing from lexical cues and perceived certain-

ty trends." arXiv preprint

arXiv:1611.02590 (2016).

Zhao, Zhe, Paul Resnick, and Qiaozhu Mei. "Enquir-

ing minds: Early detection of rumors in social me-

dia from enquiry posts." Proceedings of the 24th

International Conference on World Wide Web.

ACM, 2015.

Arkaitz Zubiaga ,Maria Liakata,Rob Procter, Gerald-

ine Wong Sak Hoi, and Peter Tolmie. "Analysing

how people orient to and spread rumors in social

media by looking at conversational threads." PloS

one 11.3 (2016): e0150989.

Arkaitz Zubiaga, Elena Kochkina, Maria Liakata, Rob

Procter, and Michal Lukasik. "Stance classification

in rumors as a sequential task exploiting the tree

structure of social media conversations." arXiv

preprint arXiv:1609.09028 (2016)

469

