
Proceedings of the 11th International Workshop on Semantic Evaluations (SemEval-2017), pages 449–452,
Vancouver, Canada, August 3 - 4, 2017. c©2017 Association for Computational Linguistics

UWAV at SemEval-2017 Task 7: Automated feature-based system for
locating puns

Ankit Vadehra
University of Waterloo

avadehra@uwaterloo.ca

Abstract

In this paper we describe our system cre-
ated for SemEval-2017 Task 7: Detection
and Interpretation of English Puns(Miller
et al., 2017). We tackle subtask 1, pun
detection, by leveraging features selected
from sentences to design a classifier that
can disambiguate between the presence or
absence of a pun. We address subtask 2,
pun location, by utilizing a decision flow
structure that uses presence or absence of
certain features to decide the next action.
The results obtained by our system are en-
couraging, considering the simplicity of
the system. We consider this system as
a precursor for deeper exploration on ef-
ficient feature selection for pun detection.

1 Introduction

Puns are ambiguous word pairs in language that
play on the different meaning of the word (pol-
ysemy), or utilize similarly pronounced sounds
(phonology) often for a humorous effect(Miller
and Turković, 2016). They are widely used in
written and spoken literature, intended as jokes.
The task tries to detect whether a sentence is a pun
or not (Subtask 1). If a pun is detected, we try to
detect which word in the sentence was meant as a
pun (Subtask2). For example, the sentence, “I’d
tell you a chemistry joke, but, I know I wouldn’t
get a reaction.” is a play on the word reaction,
which is a common phrase. But, including it after
chemistry, which deals with chemical reactions;
gives it a humorous intent. Another example, the
sentence, “I used to meditate a lot, but now I only
do it every now and zen.” plays on the similar pro-
nunciation of the words zen and then. Puns often
require knowledge about syntactic similarity be-
tween words and phrases like meditation and zen,

chemistry and reaction, etc.
Recently, a definite trend is noticeable in de-

veloping a system that can automatically detect
puns efficiently so that the humorous nature of the
pun can be captured. Pun detection is of high im-
portance for language modeling, machine transla-
tion and sentiment analysis task so that the actual
meaning of terms can be understood. This allows
effectively utilizing the intended meaning rather
than just the words themselves.

The absence of any unified global word knowl-
edge base makes detections of puns difficult since
automatic selection of intended meaning is hard.
There exist many Word Sense Disambiguation
(WSD) approaches, but they are inefficient in cap-
turing the word play(Miller and Gurevych, 2015).
This makes pun detection a very interesting area
to work on.

Due to the ambiguous nature of the words used,
sentences containing puns are often wrongly clas-
sified. Due to an absence of a globally used
pun dataset, all work in this area utilize self-
accumulated and tagged datasets. This makes it
difficult to compare the performance of different
approaches.

We use the SemEval2017 Task7 dataset and de-
sign a classifier system that can detect the pres-
ence and location of puns. We explain the features
selected and extracted that can efficiently detect
puns in Section 2.1.1. In Section 2.2.1, we propose
our decision flow based algorithm that utilizes fea-
tures to locate the word in the sentence that was
intended as the pun. We show and explain our re-
sults in Section 3 .

2 System Overview

We use this section to explain details of the system
we designed for the task. The task was distributed
in different subtasks and each subtask had two

449



tasks for Homographic puns and Heterographic
puns. Homographic puns play on the two distinct
meanings of a word, whereas, Heterographic puns
deal with the similar phonological pronunciation
between words. For each subtask we design a sin-
gle system, to tackle both Heterographic and Ho-
mographic puns, since in real life, we don’t find
a distinction between the two types. We try to
present a system that could identify puns, irrespec-
tive of their type.

2.1 Subtask 1: Pun Detection

In this section we present the description of the
classifier system used for detecting whether a sen-
tence contains a pun or not.

2.1.1 Feature Set

For an efficient classifier we extract the following
binary features from the sentence. The value for
each feature is either 1 or 0, denoting the presence
or absence of that feature in that sentence. We se-
lect the features that were generally found in puns.
• Homophone: Homophones are a set of words
that have the same pronunciation but different
meaning like ”knew” and ”new”. We utilize two
sources1,2 from the Internet to create a list of ho-
mophones. This list is in no way exhaustive but
covers the most frequent homophones.
• Antonym: Antonyms are pair of words that are
opposite in meaning, like ”good” and ”bad”. We
utilize the WordNet (Miller, 1995) library to check
whether the sentence contains any antonym pairs.
• Idioms: Idioms are group of words that are used
together as an expression having a specific mean-
ing. For example the phrase ”blue moon” means
something rare. We create a list of the most com-
mon idioms from the Englishclub website3.
• Homonym: Homonyms are words that have
more than one definitions. For example the word
‘fine’. We create a list of the most common
homonyms from Wikipedia4 and Alphalink5.
• word2vec similarity: We utilize the word2vec
word representations(Mikolov et al., 2013) pre-

1http://www.zyvra.org/lafarr/hom.htm
2http://www.singularis.ltd.uk/

bifroest/misc/homophones-list.html
3https://www.englishclub.com/ref/

Idioms/
4https://en.wikipedia.org/wiki/List_

of_true_homonyms
5http://home.alphalink.com.au/

˜umbidas/homonym_main.htm

trained on the 100 billion Google News words6.
We construct a set of unique pair of words from the
sentence and check the similarity score between
them. If a score higher than the threshold (set to
0.30) is obtained for any pair, we assume that a
word2vec similar word pair exists.
•WordNet similarity: We can utilize the Word-
Net (Miller, 1995) tree to calculate the distance
between two words. Similar words are relatively
closer and have high similarity score. If any pair
of words has score higher than threshold (set to
0.30) we assume that a WordNet similar pair ex-
ists.

The threshold similarity value was set by manu-
ally calculating the similarity score for some sim-
ilar words like ketchup and mustard.

2.1.2 Classification
Extracting the six binary features, described in the
previous section, from our training dataset (ex-
plained in Section 3.1.1) we train three classifiers.
• Support Vector Machine(SVM): We use an
SVM with a linear kernel, C=1, a squared-hinge
loss function, and L2 loss penalty (Pedregosa
et al., 2011).
• Naive Bayes(NB): We use Binomial variant
with Laplace smoothing parameter = 1 (Pedregosa
et al., 2011).
• Logistic Regression(LR): We use Logistic Re-
gression with L2 loss penalty, and C=1 (Pedregosa
et al., 2011).

The classifier gives an output of 1 or 0, denot-
ing the presence or absence of a pun. We use the
best-of-three approach, pooling the results of all
three classifiers and selecting the highest occur-
ring value (1 or 0).

2.2 Subtask 2: Pun Location

In this section we describe the decision flow based
algorithm to expose the word in the sentence that
represents the pun.

2.2.1 Algorithm Design
We present the decision flow algorithm used to de-
tect the pun word in the sentence in Algorithm 1.

We start by utilizing the list of homophones
and homonyms as described in Section 2.1.1. We
utilize the word2vec pre-trained vectors (Mikolov
et al., 2013) and the WordNet library (Miller,

6https://code.google.com/archive/p/
word2vec/

450



1995) to calculate similarity score using calcScore
function.

Algorithm 1 Algorithm to detect location of pun
word in sentence.
Require: hph = list of homophones; hom = list

of homonym; wn = WordNet Library; w2v =
word2vec pre-trained vectors; S = Sentence to
test;

1: sHalf ← Second Half of words in S
2: sHalf ← Reverse words in sHalf
3: flag = 0
4: for word ∈ sHalf do
5: if length(word) > 3 then
6: if word ∈ (hph ∪ hom) then
7: pun← word
8: flag = 1; break;
9: end if

10: if antonym(word) ∈ S then
11: pun← word
12: flag = 1; break;
13: end if
14: end if
15: end for
16: if flag = 0 then
17: prevScore = 0
18: revS ← Reverse of words in S
19: wP ← Pairs of words ∈ revS
20: for p ∈ wP do . p = (word1, word2)

21: score← calcScore(word1, word2)
22: if score > prevScore then
23: prevScore← score
24: pun← word1
25: end if
26: end for
27: end if
28: if prevScore = 0 then
29: pun← Last word of S
30: end if

We break the sentence into its constituent
words, and check whether any word in the second
half of the sentence is a homophone/homonym.
If any such word is found, it is considered as
the pun word. If no such match is found, we
check whether any word in the second half has
an antonym (Section 2.1.1) in the sentence. If an
antonym pair is found, that word is considered as
the pun.

If no match is found then we consider the
unique pair combinations of words in the sentence
and calculate the word similarity. The word from

the back of the sentence that has the highest simi-
larity score with any other word in the sentence is
considered as the pun word. If all decisions fail,
the last word in the sentence is considered as the
pun word.

3 Experiment and Results

3.1 Subtask 1: Pun Detection

We extract features and design a classifier for Sub-
task 1.

3.1.1 Dataset
We created the dataset for the classifier by gath-
ering puns from the punoftheday7 website. The
website consists of user aggregated puns of all
types. A collection of 5316 puns were accumu-
lated.

For non-pun sentences multiple sources were
used. Sentences containing homophones and
homonyms were extracted from WordNet (Miller,
1995). We also utilized the SemEval2012 - Task
68 training dataset by taking a single sentence
from each dataset item. The BBC dataset (Greene
and Cunningham, 2006) of news articles was also
used9. We extracted the first sentence for each
news article. Compiling all these sources gave us
a set of 4848 non-pun sentences.

3.1.2 Result
We tabulate the results achieved in the SemEval
2017 Task 7 in Table 1.

Table 1: Official SemEval Results for Subtask1.
PunTask Precision Recall Accuracy F1

Homographic 0.78 0.61 0.60 0.68
Heterographic 0.79 0.62 0.61 0.69

3.1.3 Limitations
On deeper analysis of the training dataset we
found that the final testing dataset contained items
from the punoftheday7 website too. This made
multiple items from the test dataset present in our
training dataset. In total, 1145 items from the Ho-
mographic task and 715 items from the Hetero-
graphic task were present in our training set.

Due to this unfortunate coincidence, we recre-
ated our training set, eliminating all the items that

7http://www.punoftheday.com/
8https://www.cs.york.ac.uk/

semeval-2012/task6.html
9http://mlg.ucd.ie/datasets/bbc.html

451



were present in the SemEval Test set. This re-
duced our dataset to 3456 puns and 4848 non-
puns. Retesting on this dataset provided us with
the following results as mentioned in Table 2:

Table 2: Recalculated Results for Subtask1.
PunTask Precision Recall Accuracy F1

Homographic 0.68 0.47 0.47 0.56
Heterographic 0.65 0.42 0.43 0.51

3.2 Subtask2: Pun Location
For this task we run the testing dataset through our
algorithm proposed in Section 2.2.1. We submit-
ted two runs for this subtask, using WordNet Path
Similarity for one run and word2vec word similar-
ity for the other.

3.2.1 Result
The results achieved using WordNet as a similarity
metric are tabulated in Table 3, whereas Table 4
tabulates the results obtained using word2vec as a
similarity measure.

Table 3: SemEval Subtask2 results using WordNet
as similarity measure.

PunTask Precision Recall F1
Homographic 0.315 0.315 0.315
Heterographic 0.357 0.357 0.357

Table 4: SemEval Subtask2 results using
word2vec as similarity measure.

PunTask Precision Recall F1
Homographic 0.341 0.341 0.341
Heterographic 0.428 0.428 0.428

4 Conclusion

Based on our submissions and the results for Se-
mEval2017 Task7, we believe that efficient feature
selection may be a feasible approach for automatic
detection of sentences containing puns. We pro-
pose to integrate language models and word sub-
stitution in future work to perform deeper analysis
on the dataset.

Even though our system was not the best one,
we do believe that the simplicity of its design is a
highly attractive feature. We selected features for
our system that are generally found in puns. We
found that some of the features like homophones
resulted in poor performance for Subtask 2. Future
work on efficient feature selection might allow us
to get much higher results.

References
Derek Greene and Pádraig Cunningham. 2006. Prac-

tical solutions to the problem of diagonal dom-
inance in kernel document clustering. In Proc.
23rd International Conference on Machine learning
(ICML’06). ACM Press, pages 377–384.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems. pages 3111–3119.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM 38(11):39–
41.

Tristan Miller and Iryna Gurevych. 2015. Automatic
disambiguation of english puns. In ACL (1). pages
719–729.

Tristan Miller, Christian F. Hempelmann, and Iryna
Gurevych. 2017. SemEval-2017 Task 7: Detec-
tion and interpretation of English puns. In Proceed-
ings of the 11th International Workshop on Semantic
Evaluation (SemEval-2017).

Tristan Miller and Mladen Turković. 2016. Towards
the automatic detection and identification of english
puns. The European Journal of Humour Research
4(1):59–75.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. 2011. Scikit-learn:
Machine learning in python. Journal of Machine
Learning Research 12(Oct):2825–2830.

452


