ELiRF-UPV at SemEval-2017 Task 7: Pun Detection and Interpretation

Lluis-F. Hurtado, Encarna Segarra, Ferran Pla, Pascual Carrasco, José-Angel Gonzalez
Universitat Politecnica de Valéncia
Cami de Vera sn, 46022, Valencia

{lhurtado|esegarra|fpla|pascargo| jogonba2}@dsic.upv.es

Abstract

This paper describes the participation of
ELiRF-UPV team at task 7 (subtask 2:
homographic pun detection and subtask
3: homographic pun interpretation) of Se-
mEval2017. Our approach is based on the
use of word embeddings to find related
words in a sentence and a version of the
Lesk algorithm to establish relationships
between synsets. The results obtained are
in line with those obtained by the other
participants and they encourage us to con-
tinue working on this problem.

1 Introduction

Pun is a figure of speech that consists of a de-
liberate confusion of similar words or phrases for
rhetorical effect, whether humorous or serious. In
(Giorgadze, 2014), the author analyzed, from a
linguistic point of view, the pun as one of the cat-
egories of wordplay and its manifestation in one-
liner jokes in English. Pun is a way of using the
characteristics of the language to cause a word,
a sentence or a discourse to involve two or more
different meanings. Therefore, humorous or any
other effects created by puns depend upon the am-
biguities of these words.

Pun detection is closely related to the Word
Sense Disambiguation (WSD) problem, but in this
case we need to select two senses of the pun
(Miller and Gurevych, 2015; Miller and Turkovi,
2016).

The interpretation of puns has been subject of
study in theoretical linguistics, and has led to a
small but growing body of research in computa-
tional linguistics. In the task 7 of the SemEval
2017 competition, organizers proposed three chal-
lenges (subtasks): pun detection, pun location and
pun interpretation (Miller et al., 2017).

440

In this work, we present a proposal for two sub-
tasks: homographic pun location (subtask2), and
homographic pun interpretation (subtask3).

Our proposal for both subtasks lies in the hy-
pothesis that the two senses of the pun in the sen-
tence are possible thanks to the coexistence of the
pun with other words in that sentence that are se-
mantically close to the pun. According to this hy-
pothesis, our method for pun detection consists of
finding pairs of words more semantically related
in the sentence. In addition, our method for pun
interpretation is based on the detection of words
in the sentence, different from the pun, that help
to find the two senses of the pun. The selection
of these words is also based on the criterion of the
semantic proximity to the pun.

2 Subtask 2: Pun location process

Pun localization consists of identifying which
word is the pun given a sentence that contains a
pun. Our proposal is based on two hypotheses: i)
to find the most semantically related pair of words
(one of these words should be the pun); ii) the pun
should be at the end of the sentence.

Our approach to the pun location process is
made following the Algorithm 1. As a previous
step, the sentence is processed in order to elim-
inate punctuation marks and stop words, and to
convert uppercase to lowercase. As a result of this
process a set of semantically relevant tokens is ob-
tained. This process removes from the sentences
those tokens without semantics. Each token is rep-
resented by its embedding obtained from a pre-
trained word embedding model (Mikolov et al.,
2013) trained on part of Google News dataset (3
million words). The embedding dimension was
fixed to 300.

For all the pairs of tokens, the cosine distance
of their corresponding embedding representation

Proceedings of the 11th International Workshop on Semantic Evaluations (SemEval-2017), pages 440443,
Vancouver, Canada, August 3 - 4,2017. (©2017 Association for Computational Linguistics

is calculated. The pairs are ranked according to
this distance and the pair of less distance is se-
lected. Finally, the pun selection is performed ap-
plying two heuristics:

e First, we assume that consecutive words in
a sentence are semantically close, but the
words that help the pun to be interpretable
are not placed next to the pun. Therefore, we
do not consider those pairs that correspond to
consecutive words in the sentence.

Second, we assume that the words that help
the pun to be interpretable are placed before
the pun in the sentence. Therefore, we se-
lected as pun the word in the pair that is situ-
ated closer to the end of the sentence.

Algorithm 1: Selection of the pun of a sen-
tence, task2
Input: s, the sentence that contains a pun
Result: wy, the word in s that we guess is the
pun

begin
k,b+— -1, 00
t «— remove_stopwords(tokenize(s))
foreach w; € t do
e; < embedding(w;)
foreach w; € t:i < j— 1do
ej < embedding(w,)
d < cosine_distance(e;, €;)
if d < b then
L bk—d,j

if £ > —1 then
| return wg

else
L return wj;|

Table 1 shows the results for the subtask 2 (Ho-
mographic pun location). Although our results
present a wide room for improvement (0.4462 for
F'1), they are in line with those obtained by other
participants. We achieved the fourth place in the
competition being the best result 0.6631 for F'1.

In order to test the two heuristics applied in
the pun selection, we additionally computed some
statistics comparing our results with those of the
gold standard.

We assumed that the words that help the pun
to be interpretable are placed before the pun in the

441

F1 0.4462
recall 0.4462
precision | 0.4462
coverage | 1.0000

Table 1: Results of subtask 2: Homographic pun
location.

sentence in most of the cases. The number of pairs
of tokens selected by our approach that contain the
pun is 767. In 702 of these pairs (91,5%), the pun
was the second component of the pair, and, only in
65 (8,5%) the pun was the first component. These
percentages confirm the goodness of this heuristic
for subtask 2.

We also assumed that the words that help the
pun to be interpretable are not placed next to the
pun; therefore, we did not consider as candidates
the consecutive words. If this heuristic is not ap-
plied, the number of pairs of tokens selected by
our approach that contains the pun is 672, fewer
than 767 pairs in case the heuristics was applied.
In these 672 pairs, there are 580 where the pun
is the word selected by our approach, and in 92
pairs, the selected word was the first component
of the pair, that is more than the 65 pairs in case
the heuristics was applied.

3 Subtask 3: Pun interpretation process

The process of pun interpretation is described by
Algorithm 2. The interpretation process of our
proposal is made following several steps:

e Selection of the two words semantically clos-
est to the pun.

In a similar way that stated for subtask 2
(Section 2), the sentence is processed in or-
der to eliminate punctuation marks and stop
words, and uppercase are converted to lower-
case.

Given the set of tokens, a sorted list of pairs
of different tokens is generated, where, the
first component of the pair is the pun w, and
the second component is any of the other to-
kens in the sentence whenever is not consec-
utive to the pun. For each pair of tokens, the
cosine distance of their corresponding em-
bedding representation is calculated.

We selected the two first pairs in the above
sorted list, (wy, w1), (wp, w2), that is, we se-
lected the two words in the sentence most

Algorithm 2: Selection of the two synsets of the pun on a sentence, task3

Input: s, the sentence that contains a pun

wp, the word in the sentence, at position p, that is the pun
Result: (sy1, sy2), the two synsets of the pun w), in the sentence s

Function get_closest_words (s, wp)
t «+ remove_stopwords(tokenize(s))

w1, W2, bl, b2 — null, null, o0, OO
ep < embedding_representation(w,,)
foreachw; €t | (i<p—1)V(i>p+1)do
e; < embedding_representation(w;)
d « cosine_distance(ey, ;)
if (d < b1) A (d < by) then
| b1, b2, w1, wo «— d, by, wi, wy
else if d < b then
L | bo, wa «d, w;
| return (w1, we)

Function get_context (synset)
d <+ get_definition(synset)

foreach e; € get_examples(synsets) do

L return w

Function synset_similarity(sy,, sy2)
c] «+— get_context(sy;)

co «+— get_context(sys)
| return ||c; N ca|

begin
w;, w; = get_closest_words(s, wp)
sy1,b «— null, —oc0
foreach sy, € synsets(w,) do
foreach sy; € synsets(w;) do

s «—synset_similarity(syp, sy;)

if s > b then

| sy1,b « syp, s

§2,b — null, —oc0

s
foreach sy, € synsets(w,) do

foreach sy; € synsets(w;) | sy; # sy1 do
s «—synset_similarity(sy,, sy;)
if s > b then
L SY2, b — SYp, S

return (5Y1, SY2)

w « {w; Etokenize(lemmatize(d)) | w; ¢ stopword_list}

| w«— wU {w; : w; €tokenize(lemmatize(e) | w; ¢ stopword_list)}

closely related to the pun from a seman-
tic point of view. The cosine distance of
(wp,wy) is the smallest and the cosine dis-
tance of (wp, wy) is the next smaller one.

In Algorithm 2, this step corresponds to the
get_closest_words function.

442

Generation of a bag-of-words per synset.

For each synset of the pun (w),) and for each
synset of both closest words (wy, ws2), we ob-
tain a bag-of-words that includes: 1) all the
lemmas in the gloss of the synset; ii) the own
name of the synset; and iii) the lemmas in
all the example sentences. Before getting the

lemmas, the sentences are processed in or-
der to convert to lowercase and to eliminate
punctuation marks and stop-words.

This step corresponds to the get_context func-
tion in Algorithm 2.

e Synsets selection.

The final goal of the subtask is to select one
pair of synsets (sy1, sy2) of the pun that rep-
resent its two different meanings in the sen-
tence. Our hypothesis is that one synset of the
pair (syy) is related to one synset of w; and
the other synset of the pair (sys2) is related to
one synset of wy. In a similar way that Lesk
algorithm (Lesk, 1986), we used as measure
of similarity between two synsets, the over-
lapping between the bags-of-words of both
synsets.

In this way, we select the first synset (sy;) of
the pun that maximizes the overlapping with
one synsets of w;. After that, we select other
synset of the pun (sy9, sy2 # sy1) that maxi-
mizes the overlapping with one synset of ws.

Table 2 shows the results of subtask 3 (Homo-
graphic pun interpretation). Our results are low,
but are in line with the results of the rest of the
participants. We achieved 0.0996 for F'1 (the third
place), being the best result 0.1557.

F1 0.0996
recall 0.0978
precision | 0.1014
coverage | 0.9646

Table 2: Results of subtask 3: Homographic pun
interpretation.

As in the subtask 2, we calculated some statis-
tics comparing our results with those of the gold-
standard. The number of correct pairs of synsets
was 127 of the 1252 analyzed sentences, however,
there were 255 additional sentences for which one
synset was correct.

4 Conclusions

In this work, we have presented our participation
at task 7 (subtask 2: homographic pun detection
and subtask 3: homographic pun interpretation) of
SemEval2017. Our approach is based on the use

443

of word embeddings to find related words in a sen-
tence and a version of the Lesk algorithm to estab-
lish relationships between synsets. We achieved
the fourth place in subtask 2 (Homographic pun
location) and the third place in subtask 3 (Homo-
graphic pun interpretation).

The results obtained are in line with those ob-
tained by the other participants and they encourage
us to continue working on this problem.

As future work we plan to adapt state-of-the-art
WSD techniques to tackle with the pun interpreta-
tion problem.

Acknowledgements

This work has been partially funded by the Span-
ish MINECO and FEDER founds under project
ASLP-MULAN: Audio, Speech and Language
Processing for Multimedia Analytics, TIN2014-
54288-C4-3-R.

References

Meri Giorgadze. 2014. Linguistic features of pun,
its typology and classification. European Scientific
Journal .

Michael Lesk. 1986. Automatic sense disambigua-
tion using machine readable dictionaries: How to
tell a pine cone from an ice cream cone. In
Proceedings of the 5th Annual International Con-
ference on Systems Documentation. ACM, New
York, NY, USA, SIGDOC ’86, pages 24-26.
https://doi.org/10.1145/318723.318728.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word rep-
resentations in vector space. CoRR abs/1301.3781.
http://arxiv.org/abs/1301.3781.

Tristan Miller and Iryna Gurevych. 2015. Automatic
disambiguation of english puns. In Proceedings
of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing

(ACL-IJCNLP 2015). page 719729.

Tristan Miller, Christian F. Hempelmann, and Iryna
Gurevych. 2017. SemEval-2017 Task 7: Detec-
tion and interpretation of English puns. In Proceed-
ings of the 1 1th International Workshop on Semantic
Evaluation (SemEval-2017).

Tristan Miller and Mladen Turkovi. 2016. Towards
the automatic detection and identification of en-
glish puns. European Journal of Humour Research
4(1):59-75.

