
Proceedings of the 11th International Workshop on Semantic Evaluations (SemEval-2017), pages 432–435,
Vancouver, Canada, August 3 - 4, 2017. c©2017 Association for Computational Linguistics

JU_CSE_NLP at SemEval 2017 Task 7: Employing Rules to Detect and
Interpret English Puns

Dipankar Das and Aniket Pramanick
Department of Computer Science and Engineering

Jadavpur University, Kolkata, India
dipankar.dipnil2005@gmail.com
abcdefgh.ABCD65@gmail.com

Abstract

The problem of detection and interpreta-
tion of English puns falls under the area
of word sense disambiguation in natural
language processing, which deals with the
sense of a word used in a sentence from
the readers’ perspective. We have tried to
design a system to identify puns from a sen-
tence by developing a cyclic dependency–
based system which is implemented based
on some rules which are actually statistical
inferences taken from a set of random data
collected from the Web.

1 Introduction
Extensive research has been done in the field of
modelling and detecting puns (Hempelmann, 2003;
Miller and Gurevych, 2015). The context or the
sense depends largely on the perspective and knowl-
edge of the reader about a particular language. For
example, in the sentence, ‘I was a banker but I
lost interest,’ the word in italics conveys two dif-
ferent meanings or ‘senses’ in the sentence. So,
the word ‘interest’ could be called a pun. A pun
is the exploitation of the various meanings of a
word or words with phonetic similarity but different
meanings.
Our system is a rule-based implementation of a

dependency network and a hidden Markov model.

2 Dataset and Preprocessing
In the present shared task (Miller et al., 2017),
participants are provided with a trial dataset and
a test dataset. No training data was supplied due
to the large cardinality of such words or contexts
in general. In case of the subtask on pun detection
(Subtask 1), the test data was subdivided into two
sets: a homographic set containing 2250 contexts,
and a heterographic set containing 1780 contexts.

On the other hand, in case of Subtask 2, another
set of data was provided and that set was also
subdivided into homographic and heterographic
sets.
For training purposes, or rather to analyze the

contexts statistically, a dataset was collected from
random sources, mostly form Project Gutenberg
and used in our present experiments. This dataset
contains 413 sentences and is not subdivided into
homographic and heterographic subsets.
The given data containing English contexts is

preprocessed and each word of a sentence is tagged
with its part of speech using NLTK, an open-source
package for NLP written in Python. For example,
the sentence, ‘I was a banker but I lost interest.’ is
tagged using the Stanford NLP parser as follows:

[(‘I’, ‘PRP’), (‘was’, ‘VBD’), (‘a’, ‘DT’),
(‘banker’, ‘NN’), (‘but’, ‘CC’), (‘I’,
‘PRP’), (‘lost’, ‘VBD’), (‘interest’, ‘NN’),
(‘.’, ‘.’)]

We also generate the parse tree for the sentence,
which looks as in Figure 1. Using such parse trees,
the clauses are identified and used for our further
tasks.

3 System Framework
We have used a hidden Markov model (Ghahra-
mani, 2001) and incorporated cyclic depen-
dency (Toutanova et al., 2003) in order to detect
points of pun occurrences in English sentences.
The probability has been calculated with respect to
each word being pun in a sentence. To calculate the
probability, the parts of speech of the words imme-
diately surrounding the target word are considered
and the probability is increased accordingly.

3.1 Features
To train the system, 413 sentences, each containing
a pun, has been analyzed. The probability of stop

432



S

S

NP

PRP

I

VP

VBD

was

NP

DT

a

NN

banker

CC

but

S

NP

PRP

I

VP

VBD

lost

NP

NN

interest

.

.

Figure 1: Parse tree for ‘I was a banker but I lost interest.’

words such as articles, prepositions, ‘be’-verbs,
conjunctions, and infinitives are assumed to be 0
as they cannot be a pun. The probability of each
part of speech being a pun is calculated from the
training data and is given in Table 1.

Part of Speech Probability
Noun 0.1538
Adjective 0.1111
Verb 0.0806
Others 1/(Sentence Length)

Table 1: Pun probability by part of speech.

Since in the task it is explicitly mentioned that
each sentencewill contain at most one pun, sentence
length in this context has been defined as the number
of words in the sentence. Each word of a smaller
sentence will have higher probability of being pun.

The concept of clauses has been used in order to
modify the probability. The clauses are extracted
from the parse tree generated by the Stanford Parser.
And clauses are classified as follows:

Type 1: Any clause that doesn’t contain any other
clauses falls under this category. A word
which belongs to this type of clause has a
pretty low probability of being pun.

Type 2: Any clause that contains only Type 1
clauses falls under this category. A word
which belongs to this type of clause has a
medium probability of being pun.

Type 3: Any clause that contains Type 1, Type 2, or
other Type 3 clauses falls under this category.

A word which belongs to this type of clause
has a very high probability of being pun.

Thus, the probability is increased according to the
occurrence of the words within the aforementioned
category of puns. Data collected from the trial set
tells that a word that belongs to the Type 3 clause
has 0.1 higher probability approximately than the
words that belong to the clauses of other types.

Furthermore, it has been observed that if a word
ends with ‘-ing’ or ‘-ed’, the probability of the word
being a pun increases by 0.01.
It has also been observed that this probability

depends on the parts of speech of the words adjacent
to the target words. This is given in Tables 2 and 3.

POS of previous word Increase Factor
Infinitive 0.02
Noun 0.01
Punctuations 0.014

Table 2: Pun probability by POS of previous word.

POS of next word Increase Factor
Infinitive 0.02
Noun 0.01
Preposition 0.01
Punctuations 0.014

Table 3: Pun probability by POS of next word.

If the word is situated at the end of the sentence
then its probability is increased by 0.02. The
probability assigned to stop words and punctuation
is 0.

433



3.2 Rule Definitions
Since this system is a rule-based implementation, a
few rules are defined in order to identify the puns.
These are as follows:

Rule 1: The probability of stop words (i.e., articles,
prepositions, infinitives, and pronouns) being
puns is trivially 0. ‘Be’-verbs can also never
be a pun in any English sentence. For example,
in the sentence, ‘I am a good boy,’ the stop
words words ‘a’ and ‘am’ cannot be puns in
any case.

Rule 2: The probability of a word being a pun
increases if it is a noun. It has been seen from
the set of sentences collected from the Web
that out of 195 words which are nouns, 30
are puns. This is highest among all parts of
speech. For instance, in the sentence ‘She
thought it was a real horse, but it was a phony,’
the pun ‘phony’ is a noun.

Rule 3: If a word belongs to a higher-level clause,
then its probability of being pun increases.
That is, if a word belongs to a Type 3 clause,
its probability of being pun will be higher than
a word that belongs to a Type 2 or Type 1
clause.

Rule 4: The probability of a word being a pun
depends on the parts of speech of the words
before and after it in a wrap-around fashion.
For example, in the sentence ‘She thought it
was a real horse , but it was a phony,’ the
word just before the word ‘phony’ is ‘a’, an
article, and thus ‘phony’ will have a greater
probability of being pun than the other words
in the sentence.

Rule 5: A probability of being a pun is associated
to every part of speech, which is furnished in
Table 1.

Rule 6: It has been observed that if a word ends
with ‘-ed’ or ‘-ing’, it will have greater chance
of being a pun.

3.3 Inference from Rules
In our system, we have used rules to determine
the probability of each word in a sentence being a
pun. We have used the basic statistical formula of
determining the probability for dependent events
in this respect: P(A|B) = P(A⋂

B)/P(B) and
P(A⋃

B) = P(A) + P(B) − P(A⋂
B).

Using standard formulas related to probability we
have calculated the cumulative probability obtained
by the cumulative effect of all the rules. Since in
the task it is given that a given sentence in the test
data could contain at most one word that could be
determined a pun, we have only considered simple
cases. For a random sentence that could potentially
contain unknown number of puns, complex rules
must be developed and the dependency among the
rules to be determined.

3.4 Result
Assigning probability to each of the word of the
sentence by the rules defined in the previous sections
gives a vector whose length equals the length of the
sentence. For example the sentence ‘I was a banker
but I lost interest.’ gives the vector [0.000, 0.201,
0.000, 0.274, 0.000, 0.000, 0.261, 0.314, 0.000].
We denote this vector the pun vector.

It has been observed that if the maximum value
among the components of this pun vector is less than
or equal to 0.25, then the sentence does not contain
any pun. On the other hand, if the maximum value
among the components of the vector exceeds the
value 0.25, then the sentencemust contain a pun and
the word corresponding to the maximum-valued
component can be declared as a pun.
Applying this concept to the test data provided

by the organizers, we obtained the coverage (C),
precision (P), accuracy (A), recall (R), and F-score
(F1) shown in Tables 4 and 5.

Type P A R F1
Homo 0.7251 0.6884 0.9079 0.8063
Hetero 0.7369 0.7174 0.9402 0.8261

Table 4: Results on Subtask 1.

Type P C R F1
Homo 0.3348 1.0000 0.3348 0.3348
Hetero 0.3792 1.0000 0.3792 0.3792

Table 5: Results on Subtask 2.

4 Conclusion
In this paper we have presented a system based on a
dependency probabilistic model to detect and iden-
tify puns from a given English sentence. Undoubt-
edly, the problem will become far more complex if
the sentence contains more than one pun and the
task is to identify each of those words individually.

434



In the test dataset, various non-pun words have
been identified as puns because not only the context
between pun and a non-pun is very narrow but the
structural discrimination between the pun and the
non-pun word in a sentence sometimes becomes
very difficult even considering all aspects of the
sentence including meanings and parts of speech
of individual words.
Thus identifying a pun is pretty complex task

and we believe that this model could be extended to
identify complex cases. Apart from this, solutions
to this problem will have tremendous effect in
emotions recognition and analysis.

References
Zoubin Ghahramani. 2001. An introduction

to hidden Markov models and Bayesian net-
works. International Journal of Pattern Recog-
nition and Artificial Intelligence 15(1):9–42.
https://doi.org/10.1142/S0218001401000836.

Christian F. Hempelmann. 2003. Paronomasic Puns:
Target Recoverability Towards Automatic Genera-
tion. Ph.D. thesis, PurdueUniversity, West Lafayette,
IN.

Tristan Miller and Iryna Gurevych. 2015. Automatic
disambiguation of English puns. In The 53rd Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing of the Asian Feder-
ation of Natural Language Processing: Proceedings
of the Conference. volume 1, pages 719–729.

Tristan Miller, Christian F. Hempelmann, and Iryna
Gurevych. 2017. SemEval-2017 Task 7:Detection
and interpretation of English puns. In Proceedings
of the 11th InternationalWorkshop on Semantic Eval-
uation (SemEval-2017).

Kristina Toutanova, Dan Klein, Christopher D. Man-
ning, and Yoram Singer. 2003. Feature-rich part-
of-speech tagging with a cyclic dependency net-
work. In Proceedings of the 2003 Conference
of the North American Chapter of the Associ-
ation for Computational Linguistics on Human
Language Technology. volume 1, pages 173–180.
https://doi.org/10.3115/1073445.1073478.

435


