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Abstract

In this paper, we introduce an approach
to combining word embeddings and ma-
chine translation for multilingual seman-
tic word similarity, the task2 of SemEval-
2017. Thanks to the unsupervised translit-
eration model, our cross-lingual word em-
beddings encounter decreased sums of
OOVs. Our results are produced using
only monolingual Wikipedia corpora and
a limited amount of sentence-aligned data.
Although relatively little resources are uti-
lized, our system ranked 3rd in the mono-
lingual subtask and can be the 6th in the
cross-lingual subtask.

1 Introduction

With convenient word representation methods be-
ing proposed, word embeddings are successfully
utilized in state-of-the-art systems ranging from
text classification (Kim, 2014), opinion catego-
rization (Enrı́quez et al., 2016), machine transla-
tion (Zou et al., 2013), to stock price prediction
(Peng and Jiang, 2016) and so on.

In earlier studies, the latent semantic analysis
(LSA) was introduced by Deerwester (1990). It is
called topic model because terms are represented
as the vectors of topics and was popularized by
Landauer (1997). In 2003, researchers developed
the topic model based on latent Dirichlet alloca-
tion(LDA) (Blei et al., 2003). LDA did not widely
spread until the Gibbs sampling was applied to the
on-line training of LDA (Hoffman et al., 2010).
Another traditional distributional method, point-
wise mutual information metric was proposed by
Turney and Pental (2010). Recently, fast dis-
tributed embeddings like (Mikolov et al., 2013c)
and GloVe (Pennington et al., 2014) are based on
the assumption that the meaning of a word de-

pends on its context. As Levy et al. (2015) pointed
out, there is no significant performance difference
between them.

For cross-lingual word representation, there
are generally four categories: Monolingual map-
ping (Mikolov et al., 2013b), pseudo-cross-lingual
training (Gouws and Søgaard, 2015), cross-lingual
training (Hermann and Blunsom, 2014) and joint
optimization (Coulmance et al., 2015). As pre-
sented in (Mogadala and Rettinger, 2016) , the
joint optimization method represents the state-of-
the-art level in cross-lingual text classification and
translation. These methods train embeddings both
on monolingual and parallel corpora by jointly op-
timizing the losses. However, they are rarely used
in word similarity due to the unsatisfying perfor-
mance.

In this task, we adopt different strategies for
the two subtasks. We use word2vec for subtask1,
monolingual word similarity. For the subtask2,
cross-lingual word similarity, we use jointly op-
timized cross-lingual word representation in ad-
dition to transliteration model. We build a cross-
lingual word embedding system and a special ma-
chine translation system. Our approach has the
following characteristics:

• Fast and efficient. Both word2vec and the
cross-lingual word embeddgings tool have
impressive speed (Coulmance et al., 2015)
and not need expensive annotated word-
aligned data.

• Decreasing OOVs. Our translation system is
featured by its transliteration model that deal
with OOVs outside the parallel corpus.

We constructed a naive system and did not try
out the parameters for embeddings and translation
models in limited time.
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2 Our Approach

We use skip-gram word embeddings directly for
monolingual subtask. For cross-lingual subtask,
we use English as pivot language and train multi-
lingual word embeddings using monolingual cor-
pora and sentence-aligned parallel data. A trans-
lation model is also trained by our statistical ma-
chine translation system. Subsequently, we trans-
late the words in the test set into English and look
up their word embeddings. For those out of En-
glish word embeddings, we check them from orig-
inal language word embeddings.

2.1 Word Embeddings
For monolingual task, we choose word2vec to
generate our word representations for robustness
reason. Mikolov (2013c) modeled input word em-
beddings w⃗ as the weights from the input layer to
the projection layer and its output vector w⃗o as
weights from the projection layer to the one-hot
output layer.

Skip-gram Model. The skip-gram model as-
sumes that P (w|c) = σ(w⃗ · c⃗), with c as the em-
bedding of context. Then minimize the loss func-
tion which is simplified as:

J =
∑
s∈C

∑
w∈s

∑
c∈s[w−l:w+l]

− log σ(w⃗ · c⃗) (1)

where C is the sentence set of training corpus, s
means a sentence and l is the window length. σ
is the sigmoid function. Negative sampling is ig-
nored in the equation for simplification.

Trans-gram Model. With skip-gram model
introduced, we now extend it to the trans-gram
model (Coulmance et al., 2015) for cross-lingual
task. For sentence aligned data As,t, where s is
the source language and t is the target language,
we consider the whole sentence st as the context
of each word ws in sentence ss. The loss for the
source language is written as:

Js,t =
∑

ss∈Cs

∑
ws∈ss

∑
ct∈st

− log σ(w⃗s · c⃗t) (2)

The skip-gram model also adopts the negative
sampling.

The skip-gram model is famous for its effi-
ciency (Mikolov et al., 2013a). The trans-gram
model is of the same computational complexity,
thus has the same speed. Although the cross-
lingual embeddings can be trained fast, their per-
formance on word similarity task is unsatisfying

Figure 1: Framework of our translation system.

(0.493 of correlation) with word aligned data (Lu-
ong et al., 2015). So we turn to machine trans-
lation for steady performance with assistance of
these word embeddings.

2.2 Machine Translation System

We constructed a phrase-based statistical machine
translation (SMT) system with the transliteration
model (TM) (Durrani et al., 2014). Our SMT sys-
tem is illustrated in Figure 1. Like most of the
phrased-based machine translation model, our sys-
tem follow the steps which are shallow gray in the
diagram. First we use GIZA++ (Och and Ney,
2003) as our aligner to align words and get lexical
translation table. Then phrases are extracted and
we estimate their translation scores directly and
inversely by refining the word alignments heuristi-
cally. Subsequently, a distance-based bidirectional
reordering model conditioned on both source and
target language is built to arrange the word orders.
For more details, please see (Koehn et al., 2003).
Since our SMT system is a discriminative model,
after all the features are captured, their weights are
tuned using minimum error rate training (MERT)
(Och, 2003). We choose KenLM (Heafield et al.,
2013) as our language model and a stack decoder
(Zens and Ney, 2008) with beam search for our
system.

Transliteration model. Since the parallel cor-
pus is of small size and the coverage of words is
very limited, we apply a transliteration model to
translate the OOVs. It models the character re-
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lationships between words and generate words at
the character level. For the word alignments with
character relationship, consider a word pair (e, f),
the transliteration model is defined as:

ptr(e, f) =
∑

a∈Align(e,f)

|a|∏
j=1

p(qj) (3)

where Align(e, f)is the set of possible charac-
ter alignment sequence, a is one of the alignment
sequences, qj is one alignment. For word pairs
without character relation, it is modeled by multi-
plying source and target character unigram mod-
els. The whole model is defined as the combina-
tion of transliteration and non-transliteration sub-
model, where λ is the prior probability of non-
transliteration:

pntr(e, f) =
|e|∏
i=1

pE(ei)
|f |∏
j=1

pF (fi) (4)

p(e, f) = (1 − λ)ptr(e, f) + λpntr(e, f) (5)

The transliteration model learns the character
alignment using expectation maximization (EM)
over the character pairs. λ is computed in the tun-
ing stage of the whole system.

3 Experiments

3.1 Implementation
Word representations based on different corpus
may have a significant gap on the performance.
Larger corpus typically generate better word em-
beddings. But we only use the shared corpus for
comparison.

Data. We use the benchmark monolingual
Wikipedia and Europarl copora in the task de-
scription (Camacho-Collados et al., 2017) as our
data. Especially, we only utilize the EN-DE, EN-
ES, EN-it, EN-FA parallel data for translation and
cross-lingual embedding training, where EN: En-
glish, DE: German, FA: Farsi, ES: Spanish, IT:
Italian.

Preprocessing. For Wikipedia data, we first fil-
ter out the stop words using the list from RANKS
NL1. Then we clean up digits and normalize the
marks. Empty lines and web tags are deleted fur-
ther. For parallel data, we just filter out the stop
words and normalize the marks. Parallel data are
split with 99% as training set and 1% as develop
set for tuning in translation system.

1http://www.ranks.nl/stopwords

similarity score. We use the cosine distance of
two embeddings as the similarity score of a word
pair. Its range is [-1,1].

3.2 Monolingual Experiments

We conduct an experiment on English word em-
beddings to see the performance of our vectors.
We use phrasing and positional context when
training. The phrasing is to extract phrased based
on co-occurence and the threshold is 400. Po-
sitional context treats the same word in differ-
ent position as different words. Our monolin-
gual embeddings are trained with 500 dimen-
sion, 5 iterations, 15 negative samples, win=5
and mincount=10. We use similary part of
WordSim353 (Agirre et al., 2009), MEN (Bruni
et al., 2012) , M.Turk (Radinsky et al., 2011),
Rare Words (Luong et al., 2013) and SimLex (Hill
et al.) as test sets, which contain 203, 3000, 287,
2034 and 999 word pairs respectively. The results
of our embeddings and in (Levy et al., 2015) of the
same window size without phrasing and positional
context are listed in Table 1.

The performance of the submitted systems (ex-
tra resources are used) including ours (in bold) and
RUFINO (the other system uses the same corpus)
on all languages are listed in Table 2.

3.3 Cross-lingual Experiments

In the cross-lingual word similarity subtask each
word pair is composed by words in different lan-
guages. This subtask consists of ten cross-lingual
word similarity datasets: EN-DE, EN-ES, EN-FA,
EN-IT, DE-ES, DE-FA, DE-IT, ES-FA, ES-IT, and
FA-IT. We define the OOVs as the words that can
either be found in parallel data or word embed-
dings. In this subtask, due to the limited amount of
parallel data, OOVs occupy a large proportion in
the test sets. We show the statistics of OOVs in test
sets before, after transliteration model and their fi-
nal counts after looking up cross-lingual word em-
beddings in Table 3.

In subtask 2, for the sake of limited time, we
did not use phrasing and positional context like
in subtask1. For phrases in test sets, we sum up
the vectors of all word in the phrase as its em-
bedding. The results of random embeddings that
equal to random guess without any semantics, cor-
rect results of our system and the top system (Lu-
minoso2) are listed in Table 4.

222



WordSim353s MEN M.Turk RareWords SimLex
correlation sp pr sp pr sp pr sp pr sp pr

our embeddings .814 .800 .769 .756 .650 .684 .444 .416 .436 .435
(Levy et al., 2015) .772 - .772 - .663 - .454 - .403 -

Table 1: Performance of English word embeddings on different test sets. sp is short for Spearman
correlation, pr is short for Pearson correlation.

EN DE IT FA ES
Luminoso2 .789 .700 .741 .503 .743
Luminoso1 .788 .693 .738 .501 .740

HCCL .687 .594 .651 .436 .701
NASARI .682 .514 .596 .405 .600
RUFINO1 .656 .539 .476 .360 .549

... ...
hjpwhuer .0 .024 .048 .0 .0

Table 2: Results on subtask1.

before TM after TM final
EN-DE 117 85 -27.4% 31
EN-ES 71 46 -35.2% 11
EN-IT 72 51 -29.2% 11
EN-FA 120 68 -43.3% 27
DE-ES 166 11 -33.1% 31
DE-IT 156 110 -29.5% 27
DE-FA 190 124 -34.7% 27
ES-IT 119 80 -32.8% 8
ES-FA 153 88 -42.5% 23
IT-FA 155 96 -38.1% 25

Table 3: Counts of OOVs after each steps.

random HCCL Luminoso2
EN-DE .083 .484 .763
EN-ES .022 .554 .761
EN-IT .040 .427 .776
EN-FA .074 .493 .598
DE-ES .031 .408 .728
DE-IT .035 .303 .741
DE-FA .056 .361 .567
ES-IT .039 .350 .753
ES-FA .034 .420 .627
IT-FA .014 .303 .604

GLOBAL .053 .464 .754

Table 4: Results on subtask2.

4 Results

Compared with the results in (Levy et al., 2015),
our embeddings have an improvement of 4.2% on
WordSim353s and 3.3% on SimLex while have a
slight decline of 0.3% on MEN, 1.3% on M.Turk
and 1.0% on RareWords. Thus phrasing and posi-
tional context fail to benefit word embeddings on
some test sets. It is also concluded that the embed-
dings we trained are comparable.

Table 2 shows that our system is ranked 3rd and
behave steadily better than RUFINO for subtask1.
With phrasing and positional context, Word2vec
can achieve satisfying performance.

As we can see in Table 3, up to 43.3% of OOVs
are significantly reduced , which are generated at
the character level with transliteration model and
proved to be real words. It is revealed that our
transliteration model can saliently reduce OOVs.

Our cross-lingual system was ranked 8th in offi-
cial results because of using mismatched data. We
rerun our model using the correct data and our true
results (will be mentioned in task description pa-
per) listed in Table 4 can rank the 6th. It can be
seen that our results for subtask2 are much bet-
ter than that of the random embeddings, which is
equal to guess blindly. However, the gap between
the best system and ours is significant. Not enough
parallel data and training epochs for non-English
embeddings may account for this.

5 Conclusion

For mono-lingual subtask, we train word2vec
based word embeddings with positional context
and phrasing. For cross-lingual subtask, we built a
cross-lingual word representation model and sta-
tistical machine translation system with an unsu-
pervised transliteration model, which can greatly
translate OOVs. We are the only team that uses the
benchmark corpus and achieve good performance
on both subtasks. But in global ranking for open
resources, there is much space for improvement,
i.e. using more iterations, resources and advanced
models.
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