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Abstract

In this paper we report our attempt to use,
on the one hand, state-of-the-art neural ap-
proaches that are proposed to measure Se-
mantic Textual Similarity (STS). On the
other hand, we propose an unsupervised
cross-word alignment approach, which is
linguistically motivated. The neural ap-
proaches proposed herein are divided into
two main stages. The first stage deals with
constructing neural word embeddings, the
components of sentence embeddings. The
second stage deals with constructing a se-
mantic similarity function relating pairs of
sentence embeddings. Unfortunately our
competition results were poor in all tracks,
therefore we concentrated our research to
improve them for Track 5 (EN-EN).

1 Introduction

Semantic Textual Similarity (STS) refers to the
Natural Language Processing (NLP) task which
is aimed at measuring the degree of similar-
ity/dissimilarity between two text units (Agirre
et al., 2012, 2016). In other words given a pair
of text snippets (generally a pair of sentences) the
task is to determine a real value (the semantic sim-
ilarity score) in the interval between 0.0 and 5.0,
which represents how much similar are the two
sentences of a given pair.

There are two main types of proposed systems
in prior editions of the competition: supervised
and unsupervised systems. While supervised sys-
tems are expected to be highly reliable because of
that they use human-annotated gold standards, un-
supervised systems also are highly reliable by us-
ing modest levels of linguistic knowledge. In this
work we report results from both, unsupervised
and supervised systems.

Currently the STS task involves tracks of differ-
ent nature, i.e. the monolingual and cross-lingual
ones. In this paper we investigate the underlying
properties in text which are relevant to measure se-
mantic similarity, thus we focus our major efforts
into the English-English Track 5.

2 Data

We tested a couple of supervised systems. We pre-
pared the STS monolingual English datasets from
years 2012, 2013, 2015 and 2016. After discard-
ing sentence pairs whose similarity score was ab-
sent from the corresponding gold standard files,
we obtained a dataset consisted of 10, 592 sen-
tence pairs (6, 858 are already marked as training
pairs and 3, 734 are already marked as test pairs).

In order to obtain subword embeddings we
trained the “fastText” method for 20, 50, 100,
200 and 300 dimensions by using the English
Wikipedia (Bojanowski et al., 2016). We decided
to take advantage of the capability of this method
for inferring out-of-vocabulary words. This ad-
vantage is mainly due to the fastText’s character
level n-gram approach, which represents a mean-
ingful performance difference both in training and
in testing.

3 Systems Description

Multiple Neural Network architectures were used
to model similarity measuring in supervised set-
tings. Also an unsupervised system1 was directly
tested on this year’s evaluation dataset.

3.1 Word embeddings + RNN
We see the Recurrent Neural Networks (RNN) as
intuitive models for observing relevance of sen-
tence elements; in particular the Long-Short Term
Memories (LSTMs). These kind of networks are

1https://github.com/iarroyof/sts_align
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Figure 1: Attentional architecture for detecting
relevant parts of each sentence within a pair of sen-
tences.

well documented as suitable for modeling sequen-
tiality of lexical units within sentences whereas
avoiding the gradient vanishing of long term pat-
terns (Hochreiter and Schmidhuber, 1997).

In the case of Attention LSTMs, they capture
additional features of the sequential process they
model. The additional features are encoded into an
attention vector. This attention vector indicates to
the network which segments of the sequence (sen-
tence) are statistically more relevant than the other
ones according to the training set.

In this paper we used the architecture proposed
by (Vinyals et al., 2015), where the authors used
a stacked Attention LSTM for PoS tagging. In
Figure 1 we show a modified version of the men-
tioned architecture, which consists of two atten-
tion LSTM layers on the bottom, one Gated Re-
current Unit (GRU) at the middle and a simple
RNN on top (Cho et al., 2014). Notice that this de-
scription corresponds to each of the twin networks
showed in the figure, which is our adaptation to the
STS task. This recurrent architecture is followed
by a Maxout Network (Goodfellow et al., 2013),
which has a monolithic output layer (i.e. the simi-
larity score yi ∈ [1, 5] ⊂ R).

3.2 Sentence embeddings + MLP
The word/sentence embedding stage was modeled
via the doc2vec method (Le and Mikolov, 2014),

which is based on the word2vec word embedding
method (Mikolov et al., 2013). For each pair of
sentences, we obtained a pair of sentence embed-
dings (sa, sb) ∈ Rd × Rd. Thus each pair was
concatenated to form a pair vector pi = sa∥sb ∈
R2d. In this way, we obtained a training set
(p1, y1), ..., (pm, ym) which was feed to a simple
MLP. The output layer of the MLP is a 6-node
softmax, so we have six possible output similar-
ity values, i.e. yi ∈ {0, ..., 5}.

3.3 Cross word aligner
We proposed an unsupervised system which is
motivated by linguistic elements we identified as
highly relevant accordingly to linguistic theories.
General linguistics states that we can know what is
being said about something by seeing at the pred-
icative structure. The theories by Harris (1968)
inspire NLP algorithms where it is said that word
use leads to meaning (which is commonly inter-
preted as word co-occurrence). Harris also said
that combinatorics of words is more informative
in the predicates, where redundancy is needed by
speakers to provide integrity to a message.

In an attempt to follow these statements and also
inspired by success obtained by authors like Han
et al. (2013) and Rychalska et al. (2016), we im-
plemented a word alignment system. Unlike pre-
vious works, our system considers that verbs oper-
ate on nouns. We used Open Information Extrac-
tion algorithms (openIE) for detecting predicates
(Pa,Pb) of the form (NP, V P, NP ) within each
sentence of the pair (Sa, Sb) (Fader et al., 2011).

Similarly to the word analogies commonly used
for word embedding evaluations (Mikolov et al.,
2013), our system considers that verbs frequently
operate on nouns. Thus, it is measured how sim-
ilar each verb va ∈ Pa of a sentence Sa is, with
respect to its combination with each noun nb ∈ Pb

of a sentence Sb, i.e. dc(Sa, Sb). Given that the
relationship dc(·, ·) is not commutative this simi-
larity also is computed from Sb to Sa, i.e.

dc(Sa, Sb) =
1

Nv,a

∑
va∈Sa

1
Nn,b

∑
nb∈Sb

θ(va, nb)

(1a)

dc(Sb, Sa) =
1

Nv,b

∑
vb∈Sb

1
Nn,a

∑
na∈Sa

θ(vb, na),

(1b)

where θ(·, ·) is the cosine similarity and va, na ∈
Rd are word embeddings categorized as verbs
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People are ready for change

People change

Figure 2: General scheme for the vector similari-
ties of cross word alignments with respect to struc-
tural categories.

and nouns within the sentence Sa, respectively.
Nv,a, Nn,a are the number of verbs and nouns con-
sidered in Sa (same for Sb). Overall, equations
(1a) and (1b) are the average vector similarities
of cross word alignments with respect to struc-
tural categories between Sa and Sb. For exam-
ple, in Figure 2 the sentence “People are ready
for change” [Sa] is compared against the phrase
“people change” [Sb]. The main idea, in one di-
rection [Sb] → [Sa], is to quantify how the word
“people” is used along the conjugated form “are”
(which forms a predicate together with the noun
phrase “ready for change”). This operation is also
performed in the inverted direction [Sa] → [Sb].

The kind of predicates showed in Figure 2 are
often part of more complex sentences, e.g. “It
is clear that future is near and people is ready
for change”. We extracted these predicates by
using the openIE algorithm implemented in the
coreNLP2 library.

There are cases in the STS corpora where no
extractions are made. This is due to the low re-
call openIE systems offer until now (Xu et al.,
2013). That is, many openIE algorithms can ex-
tract neither implicit relations (e.g. “Mexico City,
where Aztecs live”) nor short phrases (e.g. “The
white house”). We assume that these snippets are
expressed in their minimum form, so things like
“people changes” are embedded word by word.
The embeddings are then compared either to em-
beddings of other equally short phrases or to em-
beddings of openIE extractions. The global score
is simply the average of all distances:

sf =
dc(Sa, Sb) + dc(Sb, Sa)

2

4 Results

Our systems passed through several refinement
stages. Unfortunately, the submitted runs were

2http://stanfordnlp.github.io/CoreNLP/

LSTM Attention
Track 1 0.0471 0.0214
Track 2 0.0769 0.1292
Track 3 0.1527 0.0458
Track 4 0.1719 0.0120
Track 5 0.1446 0.0191
Track 6 0.0738 0.2038
Track 7 0.0800 0.2168
Overall 0.1067 0.0926

Table 1: LSTM network without/with attention
mechanism. Official results of the competition in
this year’s evaluation.

to early stages and did not reach competitive per-
formance as can be seen in Table 1. We trans-
formed the multi-lingual data onto English using
the Google Translate API and trained a unique
model on resulting data. We submitted two LSTM
models, with and without attention mechanism.
The models were selected by monitoring the best
test score after 25 training epochs. Additional
systems were tested after-competition. Our best
results are considered as such given its absolute
value (inverse correlations can be reinterpreted in-
system in the case we reach higher values).

4.1 Word embeddings + RNN

A sentence can be seen as a sequence of word em-
beddings which are appended in order to form a
sentence matrix. For this system we used FastText
word embeddings. Given a sentence pair, each
sentence matrix is fed to each of the multi-layered
RNNs described in Section 3.1. We used the last-
top hidden states (or time steps) of the two net-
works as sentence embeddings. We concatenated
these sentence embeddings. In this way, we ob-
tained pair vectors p1, ..., pm ⊂ R2t that were feed
to the top Maxout network (herein t is the number
of hidden states each of the top RNN layers has in
Figure 1).

The networks showed in Table 2 were trained
over 1500 pairs from data described in Section 2
(1050 for training and 450 for test). As shown in
the table, we fed the networks with word embed-
dings of 200, 100 and 50 dimensions. Results are
much better for the architecture formed by word
embeddings of 200 dimensions, 50 hidden states
and 100 hidden Maxout nodes.
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Time
steps

Hidden
Maxout

Embe-
dding di-
mension

Correlation/
MSE

50 100 200 -0.2951/1.2
100 40 100 -0.2848/1.8567
25 10 50 -0.0103/2.0738
10 40 50 -0.0123/2.0252

Table 2: Twin Attention LSTM-GRU-RNN-
Maxout architecture and performance (after-
official evaluation) on the 2017 track 5.

4.2 Sentence embeddings + MLP

We trained Doc2vec sentence embeddings
sa, sb ∈ Rd of different dimensions (i.e. d=100,
200, 300, 500, 600) by using the whole data
described in Section 2. All values of d other
than 300 showed very poor learning in the MLP
stage. Thus, we reported only results produced by
300-dimensional sentence embeddings.

Hidden layers MSE (%) Correlation
[210, 45] 64.56 0.0777
[260, 66] 64.67 0.0349
[250, 75] 64.94 0.0140
[80] 62.95 -0.0058
[270, 60] 65.32 0.0139

Table 3: Multilayer Perceptron architecture and
performance in this year’s evaluation (track 5).

In Table 3 we depict the Mean Squared Error
(MSE) for the test set and the Pearson’s weighted
correlation coefficient for the track 5 evaluation.
Many combinations in the architecture during the
training showed that even the minimum test MSE
is very high. Therefore our setting Doc2vec+MLP
did not allow for good generalization.

4.3 Cross word aligner

The cross word alignment system is unsupervised
and we tested it directly on some of the most
popular past year’s datasets. We used fastText
word embeddings of different dimensions. A good
choice for semantic assessment is 100 dimensions
(Bojanowski et al., 2016). Additionally we re-
ported results for 300, 200, 50 and 20 dimensions.

On top of Table 4 we show our best result (after
official evaluation), which is that for 200 dimen-
sions. Furthermore we noticed our engineered fea-
tures are sensitive to text properties, e.g. domains

Corpus Dim. Correlation
Eval. 2017 200 -0.4599
Eval. 2017 100 -0.4557
Eval. 2017 50 -0.4291
Eval. 2017 20 -0.3716
Eval. 2017 300 -0.3597
OnWN 200 -0.4389
Plagiarism 100 -0.1851
Headlines 20 -0.1481

Table 4: Cross word aligner results. This year’s
evaluation and best results for popular STS data.

and, therefore, writing styles are very different be-
tween Headlines and Eval. 2017. It is needed
to say that we tested direct word alignments (i.e.
verb-verb, noun-noun) without success.

5 Conclusions

Despite of the success that RNNs have recently
showed, we observed that even when they do not
require feature engineering, instead they require
training time, large data amounts, high computa-
tional power and architecture engineering. The re-
sults we showed in Section 4.1 are not good. The
reason is very probably one the aforementioned
and it needs to be improved. We think the amount
of sequential patterns with which we trained our
networks was not enough. Such patterns are based
on punctual lexical items (each particular word
embedding), but not in generalized sequential and
semantic patterns.

Our cross word alignment system is based on
feature engineering, in such a way that we showed
that when a simple cosine similarity focuses on
relevant segments of sentences, the performance
can be progressively improved (probably by im-
proving feature engineering and adding external
resources not considered at this moment). This
reasoning is consistent with much other unsuper-
vised approaches. It is needed to say that even
when we performed simple feature engineering, a
critical part of our method was the use of word
embeddings, which are barely based on linguistic
feature engineering.
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