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Abstract

This paper describes a neural-network
model which performed competitively
(top 6) at the SemEval 2017 cross-lingual
Semantic Textual Similarity (STS) task.
Our system employs an attention-based
recurrent neural network model that op-
timizes the sentence similarity. In this
paper, we describe our participation in
the multilingual STS task which measures
similarity across English, Spanish, and
Arabic.

1 Introduction

Semantic textual similarity (STS) measures the
degree of equivalence between the meanings of
two text sequences (Agirre et al., 2016). The
similarity of the text pair can be represented as
discrete or continuous values ranging from irrel-
evance (1) to exact semantic equivalence (5). It
is widely applicable to many NLP tasks includ-
ing summarization (Wong et al., 2008; Nenkova
et al., 2011), generation and question answering
(Vo et al., 2015), paraphrase detection (Fernando
and Stevenson, 2008), and machine translation
(Corley and Mihalcea, 2005).

In this paper, we describe a system that is able
to learn context-sensitive features within the sen-
tences. Further, we encode the sequential informa-
tion with Recurrent Neural Network (RNN) and
perform attention mechanism (Bahdanau et al.,
2015) on RNN outputs for both sentences. Atten-
tion mechanism was performed to increase sen-
sitivity of the system to words of similarity sig-
nificance. We also optimize directly on the Pear-
son correlation score as part of our neural-based
approach. Moreover, we include a pair feature

∗The author is currently serving in his Alternative Mili-
tary Service of Education.

adapter module that could be used to include more
features to further improve performance. How-
ever, for this competition we include merely the
TakeLab features (Šarić et al., 2012). 1

2 Related Works

Most proposed approaches in the past adopted
a hybrid of varying text unit sizes ranging from
character-based, token-based, to knowledge-based
similarity measure (Gomaa and Fahmy, 2013).
The linguistic depths of these measures often vary
between lexical, syntactic, and semantic levels.

Most solutions include an ensemble of modules
that employs features coming from different unit
sizes and depths. More recent approaches gen-
erally include the word embedding-based similar-
ity (Liebeck et al., 2016; Brychcı́n and Svoboda,
2016) as a component of the final ensemble. The
top performing team in 2016 (Rychalska et al.,
2016) uses an ensemble of multiple modules in-
cluding recursive autoencoders with WordNet and
monolingual aligner (Sultan et al., 2016). UMD-
TTIC-UW (He et al., 2016) proposes the MPCNN
model that requires no feature engineering and
managed to perform competitively at the 6th place.
MPCNN is able to extract the hidden information
using the Convolutional Neural Network (CNN)
and adds an attention layer to extract the vital sim-
ilarity information.

3 Methods

3.1 Model

Given two sentences I1 = {w1
1, w

1
2, ..., w

1
n1} and

I2 = {w2
1, w

2
2, ..., w

2
n2}, where wij denote the jth

token of the ith sentence, embedded using a func-
tion φ that maps each token to a D-dimension
trainable vector. Two sentences are encoded with

1Our system and data is available at
github.com/iamalbert/semval2017task1.
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Figure 1: Illustration of model architecture

an attentitve RNN to obtain sentence embeddings
u1, u2, respectively.

Sentence Encoder For each sentence, the RNN
firstly converts wi

j into xi
j ∈ R2H , using an bidi-

rectional Gated Recurrent Unit (GRU) (Cho et al.,
2014) 2 by sequentially feeding wi

j into the unit,
in both forward and backward directions. The su-
perscripts of w, x, a, u, n are omitted for clear no-
tation.

xi = [xF
i ;xB

i ]

xF
i = GRU(xF

i−1, wi)

xB
i = GRU(xB

i+1, wi)

(1)

Then, we attend each word xj for different
salience aj and blend the memories x1;n into sen-
tence embedding u:

aj ∝ exp(rT tanh(Wxi))

u =
n∑

j=1

ajxj
(2)

where W ∈ R2H×2H and r ∈ R2H are trainable
parameters.

Surface Features Inspired by the simple system
described in (Šarić et al., 2012), We also extract
surface features from the sentence pair as follow-
ing:

•Ngram Overlap Similarity: These are features
drawn from external knowledge like Word-
Net (Miller, 1995) and Wikipedia. We
use both PathLen similarity (Leacock and
Chodorow, 1998) and Lin similarity (Lin
et al., 1998) to compute similarity between
pairs of words w1

i and w2
j in I1 and I2, re-

spectively. We employ the suggested pre-
processing step (Šarić et al., 2012), and add

2 We also explored Longer Short-Term Memory (LSTM),
but find it more overfitting than GRU.

both WordNet and corpus-based information
to ngram overlap scores, which is obtained
with the harmonic mean of the degree of
overlap between the sentences.

•Semantic Sentence Similarity: We also com-
pute token-based alignment overlap and vec-
tor space sentence similarity (Šarić et al.,
2012). Semantic alignment similarity is com-
puted greedily between all pairs of tokens
using both the knowledge-based and corpus-
based similarity. Scores are further enhanced
with the aligned pair information. We obtain
the weighted form of latent semantic analy-
sis vectors (Turney and Pantel, 2010) for each
word w, before computing the cosine similar-
ity. As such, sentence similarity scores are
enhanced with corpus-based information for
tokens. The features are concatenated into a
vector, denoted as m.

Scoring Let S be a descrete random variable
over {0, 1, ..., 4, 5} describing the similarity of the
given sentence pair {I1, I2}. The representation of
the given pair is the concatenation of u1, u2, and
m, which is fed into an MLP with one hidden layer
to calculate the estimated distribution of S.

p =


P (S = 0)
P (S = 1)

...
P (S = 5)


= softmax(V tanh(U

 u1

u2

m

)) (3)

Therefore, the score y is the expected value of

165



S:

y = E[S] =
5∑

i=0

iP (S = i) = vT p (4)

, where v = [0, 1, 2, 3, 4, 5]T . The entire system is
shown in Figure 1.

3.2 Word Embedding
We explore initializing word embeddings ran-
domly or with pre-trained word2vec (Mikolov
et al., 2013) of dimension 50, 100, 300, respec-
tively. We found that the system works the best
with 300-dimension word2vec embeddings.

3.3 Optimization
Let pn, yn be the predicted probability density and
expected score and ŷn be the annotated gold score
of the n-th sample. Most of the previous learning-
based models are trained to minimize the follow-
ing objectives on a batch of N samples:

• Negative Log-likelihood (NLL) of p and p̂
(Aker et al., 2016). The task is viewed as a
classification problem for 6 classes.

LNLL =
N∑

n=1

− log pn
tn

, where tn is ŷn rounded to the nearest inte-
ger.

• Mean square error (MSE) between yn and ŷn

(Brychcı́n and Svoboda, 2016).

LMSE =
1
N

N∑
n=1

(yn − ŷn)2

• Kullback-Leibler divergence (KLD) of pn

and gold distribution p̂n estimated by ŷn:

LKLD =
N∑

n=1

(
6∑

i=1

p̂n
i log

p̂n
i

pn
i

)

where

p̂n
i =


ŷn − bŷnc, if i = bŷnc+ 1
bŷnc+ 1− ŷn, if i = bŷnc
0, otherwise

(Li and Huang, 2016; Tai et al., 2015). For
each n, there exists some k such that p̂n

k = 1
and ∀h 6= k, p̂n

h = 0, KLD is identical to
NLL.

However, the evaluation metric of this task is
Pearson Correlation Coefficient (PCC), which is
invariant to changes in location and scale of yn but
none of the above objectives can reflect it. Here we
use an example to illustrate that MSE and KLD
can even report an inverse tendency. In Table 1,
group A has lower MSE and KLD loss than group
B, but its PCC is also lower.

To solve this problem, we train the model to
maximize PCC directly. Hence, the loss function
is given by:

LPCC = −
∑N

n=1(yn − ȳ)(ŷn − ¯̂y)√∑N
n=1(yn − ȳ)2

√∑N
n=1(ŷn − ¯̂y)2

(5)
where ȳ = 1

N

∑N
n=1 y

n and ¯̂y = 1
N

∑N
n=1 ŷ

n.
Since N is fixed for every batch, LPCC is differ-
entiable with respect to yn, which means we can
apply back propagation to train the network. To
the best of our knowledge, we are the first team to
adopt this training objective.

Group A B
Gold Score 3 4 5 3 4 5
P (S = 0) 0.05 0.05 0.05 0.15 0.05 0.1
P (S = 1) 0.05 0.05 0.05 0.3 0.2 0.1
P (S = 2) 0.15 0.1 0.05 0.25 0.3 0.2
P (S = 3) 0.5 0.35 0.0 0.1 0.25 0.3
P (S = 4) 0.15 0.4 0.1 0.1 0.1 0.2
P (S = 5) 0.1 0.05 0.7 0.1 0.1 0.1
E[S] 2.95 3.15 4.2 2.0 2.45 2.7

MSE KLD PCC MSE KLD PCC
0.455 1.966 0.931 2.90 6.91 0.987

Table 1: Example of lower MSE and KLD not
indicating higher PCC.

4 Evaluation

4.1 Data

Dataset Pairs
Training 22,401

Validation 5,601

Table 2: Training and validation Data sets (STS
2012-2016 and SICK).

We gather dataset from SICK (Marelli et al.,
2014) and past STS across years 2012, 2013,
2014, 2015, and 2016 (Agirre et al., 2012, 2013,
2014, 2015, 2016) for both cross-lingual and
monolingual subtasks. We shuffle and split them
according to the ratio 80:20 into training set and
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validation set, respectively. Table 2 indicates the
size of training set and validation set. All non-
English sentence appearing in training, validation,
and test set are translated into English with Google
Cloud Translation API.

4.2 Experiments
In the experiment, the size of output of GRU is
set to be H = 200. We use ADAM algorithm to
optimize the parameters with mini-batches of 125.
The learning rate is set to 10−4 at the beginning
and reduced by half for every 5 epochs. We trained
the network for 15 epochs.

Word embeddings In Table 3, we demonstrate
that the system performs better with pretrained
word vectors (WI) than randomly initialized (RI).

D PCC on validation set

RI
50 0.7904
300 0.8091

WI
50 0.7974
300 0.8174

Table 3: System performance with different di-
mensions of word embeddings, using either ran-
domly initialized or pre-trained word embedding.

Loss function We display performances with
systems optimized with KLD, MSE, and PCC. It
shows that when using LPCC as the training ob-
jective, our system not only performs the best but
also converges the fastest. As shown in Table 4
and Figure 2.

Loss function PCC
LKLD 0.6839
LMSE 0.7863
LPCC 0.8174

Table 4: Influence of different loss objectives on
the system performance measured using PCC on
our validation set.

4.3 Final System Results
We tune the model on validation set, and select the
set of hyper-parameters that yields the best perfor-
mance to obtain the scores of test data. We report
the official provisional results in Table 5. There
is an obvious performance drop in track4b, which
happens to all teams. We hypothesize that the sen-
tences in track4b (en es) are collected from a spe-
cial domain, due to the fact that the number of

Figure 2: Performance of different loss functions

out-of-vocabulary words in track 4b is many times
more than that in other tracks.

Track PCC mean median max
Primary 0.6171 0.66 0 28

1 0.6821 0.53 0 3
2 0.6459 0.50 0 3
3 0.7928 0.35 0 4
4a 0.7169 0.35 0 4
4b 0.0200 2.54 2 28
5 0.7927 0.36 0 4
6 0.6696 0.33 0 5

Table 5: Final system results and statistics of the
number of OOV words within a pair

5 Conclusion

We propose a simple neural-based system with a
novel means of optimization. We adopt a simple
neural network with surface features which leads
to a promising performance. We also revise sev-
eral popular training objectives and empirically
show that optimizing directly on Pearson’s corre-
lation coefficient achieved the best scores and per-
form competitively on STS-2017.
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