
Proceedings of the 11th International Workshop on Semantic Evaluations (SemEval-2017), pages 130–133,
Vancouver, Canada, August 3 - 4, 2017. c©2017 Association for Computational Linguistics

HCTI at SemEval-2017 Task 1: Use convolutional neural network to
evaluate Semantic Textual Similarity

Yang SHAO
Hitachi, Ltd. / Higashi koigakubo 1-280, Kokubunji-shi, Tokyo, Japan

yang.shao.kn@hitachi.com

Abstract

This paper describes our convolutional
neural network (CNN) system for the Se-
mantic Textual Similarity (STS) task. We
calculated semantic similarity score be-
tween two sentences by comparing their
semantic vectors. We generated a seman-
tic vector by max pooling over every di-
mension of all word vectors in a sentence.
There are two key design tricks used by
our system. One is that we trained a
CNN to transfer GloVe word vectors to
a more proper form for the STS task be-
fore pooling. Another is that we trained
a fully-connected neural network (FCNN)
to transfer the difference of two seman-
tic vectors to the probability distribution
over similarity scores. All hyperparame-
ters were empirically tuned. In spite of the
simplicity of our neural network system,
we achieved a good accuracy and ranked
3rd on primary track of SemEval 2017.

1 Introduction

Semantic Textual Similarity (STS) is the task
of determining the degree of semantic similarity
between two sentences. STS task is a building
block of many natural language processing (NLP)
applications. Therefore, it has received a signif-
icant amount of attention in recent years. STS
tasks in SemEval have been held from 2012 to
2017 (Cer et al., 2017). Successfully estimat-
ing the degree of semantic similarity between two
sentences requires a very deep understanding of
both sentences. Well performing STS methods
can be applied to many other natural language un-
derstanding tasks including paraphrasing, entail-
ment detection, answer selection, hypothesis evi-
dencing, machine translation (MT) evaluation and

quality estimation, summarization, question an-
swering (QA) and short answer grading.

Measuring sentence similarity is challenging for
two reasons. One is the variability of linguistic
expression and the other is the limited amount of
annotated training data. Therefore, conventional
NLP approaches, such as sparse, hand-crafted fea-
tures are difficult to use. However, neural network
systems (He et al., 2015a; He and Lin, 2016) can
alleviate data sparseness with pre-training and dis-
tributed representations. We propose a convolu-
tional neural network system with 5 components:

1) Enhance GloVe word vectors by adding hand-
crafted features.

2) Transfer the enhanced word vectors to a more
proper form by a convolutional neural network.

3) Max pooling over every dimension of all word
vectors to generate semantic vector.

4) Generate semantic difference vector by con-
catenating the element-wise absolute differ-
ence and the element-wise multiplication of
two semantic vectors.

5) Transfer the semantic difference vector to the
probability distribution over similarity scores
by fully-connected neural network.

2 System Description

Figure 1 provides an overview of our system.
The two sentences to be semantically compared
are first pre-processed as described in subsection
2.1. Then the CNN described in subsection 2.2
combines the word vectors from each sentence
into an appropriate sentence level embedding. Af-
ter that, the methods described in subsection 2.3
are used to compute representations that compare
paired sentence level embeddings. Then, a fully-
connected neural network (FCNN) described in
subsection 2.4 transfers the semantic difference
vector to a probability distribution over similarity

130

scores. All hyperparameters in our system were
empirically tuned for the STS task and shown in
Table 1. We implemented our neural network sys-
tem by using Keras1 (Chollet, 2015) and Tensor-
Flow2 (Abadi et al., 2016).

2.1 Pre-process

Several text preprocessing operations were per-
formed before feature engineering:

1) All punctuations are removed.

2) All words are lower-cased.

3) All sentences are tokenized by Natural Lan-
guage Toolkit (NLTK) (Bird et al., 2009).

4) All words are replaced by pre-trained GloVe
word vectors (Common Crawl, 840B tokens)
(Pennington et al., 2014). Words that do not
exist in the pre-trained embeddings are set to
the zero vector.

5) All sentences are padded to a static length l =
30 with zero vectors (He et al., 2015a).

Several hand-crafted features are added to enhance
the GloVe word vectors:

1) If a word appears in both sentences, add a
TRUE flag to the word vector, otherwise, add
a FALSE flag.

2) If a word is a number, and the same number
appears in the other sentence, add a TRUE flag
to the word vector of the matching number in
each sentence, otherwise, add a FALSE flag.

3) The part-of-speech (POS) tag of every word ac-
cording to NLTK is added as a one-hot vector.

2.2 Convolutional neural network (CNN)

Our CNN consists of n = 300 one dimensional
filters. The length of the filters is set to be the
same as the dimension of the enhanced word vec-
tors. The activation function of the CNN is set
to be relu (Nair and Hinton, 2010). We did not
use any regularization or drop out. Early stopping
triggered by model performance on validation data
was used to avoid overfitting. The number of
layers is set to be 1. We used the same model
weights to transfer each of the words in a sentence.
Sentence level embeddings are calculated by max
pooling (Scherer et al., 2010) over every dimen-
sion of the transformed word level embedding.

1http://github.com/fchollet/keras
2http://github.com/tensorflow/tensorflow

Figure 1: Overview of system

2.3 Comparison of semantic vectors
To calculate the semantic similarity score of

two sentences, we generate a semantic difference
vector by concatenating the element-wise absolute
difference and the element-wise multiplication of
the corresponding paired sentence level embed-
dings. The calculation equation is

~SDV = (| ~SV 1− ~SV 2|, ~SV 1 ◦ ~SV 2) (1)

Here, ~SDV is the semantic difference vector,
~SV 1 and ~SV 2 are the semantic vectors of the two

sentences, and ◦ is Hadamard product which gen-
erate the element-wise multiplication of two se-
mantic vectors.

2.4 Fully-connected neural network (FCNN)
An FCNN is used to transfer the semantic dif-

ference vector (600 dimension) to a probability
distribution over the six similarity labels used by
STS. The number of layers is set to be 2. The
first layer uses 300 units with a tanh activation
function. The second layer produces the similar-
ity label probability distribution with 6 units com-
bined with a softmax activation function. We
train without using regularization or drop out.

3 Experiments and Results
We randomly split all dataset files of SemEval-

2012–2015 (Agirre et al., 2012, 2013, 2014, 2015)
into ten. We used the preparation of the data from
(Baudis et al., 2016). We used 90% of the pairs
in each individual dataset file for training and the
other 10% for validation. We tested our model
in the English dataset of SemEval-2016 (Agirre
et al., 2016). Our objective function is the Pearson
correlation coefficient computed over each batch.
ADAM was used as the gradient descent optimiza-
tion method. All parameters are set to the values

131

Table 1: Hyperparameters

Sentence pad length 30
Dimension of GloVe vectors 300
Number of CNN layers 1
Dimension of CNN filters 1
Number of CNN filters 300
Activation function of CNN relu
Initial function of CNN he uniform
Number of FCNN layers 2
Dimension of input layer 600
Dimension of first layer 300
Dimension of second layer 6
Activation of first layer tanh
Activation of second layer softmax
Initial function of layers he uniform
Optimizer ADAM
Batch size 339
Max epoch 6
Run times 8

suggested by (P.Kingma and Ba, 2015): learning
rate is 0.001, β1 is 0.9, β2 is 0.999, ε is 1e-08.
he uniform (He et al., 2015b) was used as the
initial function of layers. We did the experiment 8
times and choose the model that achieved the best
performance on the validation dataset. Our sys-
tem got a Pearson correlation coefficient result of
0.7192±0.0062.

We also used the same model design to take
part in all tracks of SemEval-2017. We submitted
two runs. One with machine translation (MT) and
another without (non-MT). In MT run, we trans-
lated all the other languages in the test dataset into
English by Google Translate3 and used the En-
glish model to evaluate all similarity scores. For
the monolingual tracks, we also tried non-MT run,
which means we trained the models directly from
the English, Spanish and Arabic data. Here, we
independently trained another English model for
each run. The difference between English-English
performance from MT and non-MT is caused by
the random shuffling of data during training.

We also trained another English model with
same design to evaluate the STS benchmark
dataset (Cer et al., 2017)4. We used only the Train
part for training and the Dev. part to fine tune. We
also run our system without any hand-crafted fea-
tures. The purely sentence representation system

3http://translate.google.com
4http://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark

Table 2: Pearson correlation coefficient with the
golden standard of 2017 test dataset

Tracks CNN Best Diff.(Rank)
STS 2016 0.7192 0.7781 0.0589(14th)

±0.0062
STS 2017 (MT)
Primary 0.6598 0.7316 0.0718(3rd)
1 AR-AR 0.7130 0.7543 0.0413(6th)
2 AR-EN 0.6836 0.7493 0.0657(3rd)
3 SP-SP 0.8263 0.8559 0.0296(4th)
4a SP-EN 0.7621 0.8302 0.0681(5th)
4b SP-EN 0.1483 0.3407 0.1924(7th)
5 EN-EN 0.8113 0.8547 0.0434(8th)
6 EN-TR 0.6741 0.7706 0.0965(3rd)
STS 2017 (non-MT)
1 AR-AR 0.4373 0.7543 0.3170(15th)
3 SP-SP 0.6709 0.8559 0.1850(15th)
5 EN-EN 0.8156 0.8547 0.0391(7th)
STS benchmark (hand-craft)
Dev. 0.8343 0.8470 0.0127(4th)
Test 0.7842 0.8100 0.0258(4th)
STS benchmark (no hand-craft)
Dev. 0.8236 0.8470 0.0234(4th)
Test 0.7833 0.8100 0.0267(4th)

also got a good accuracy. The results are shown in
Table 2. Our model achieves 4th place on the STS
benchmark5.

4 Discussion
The difference between our model’s perfor-

mance and that of the best participating system are
relative small for all tracks except track 4b and 6.
We note that the sentences in track 4b are signif-
icantly longer than the sentences in other tracks.
We speculate that the results of our system in track
4b were pulled down by the decision to use static
padding of length 30 within our model.

Another trend that could be observed is that
the results of non-MT were likely harmed by the
smaller amounts of available training data. We had
over 10,000 training pairs for English, but only
1634 pairs in Spanish and 1104 in Arabic. Corre-
spondingly, for our non-MT models, we achieved
our best Pearson correlation scores on English
with diminished results on Spanish and our worst
results on Arabic. Notably, the results obtained
by combining our English model with MT to han-
dle Spanish and Arabic were not affected by the

5As of April 17, 2017

132

limited amount of training data for these two lan-
guages and provided better performance.

5 Conclusion

We proposed a simple convolutional neural net-
work system for the STS task. First, it uses a con-
volutional neural network to transfer hand-crafted
feature enhanced GloVe word vectors. Then, it
calculates a semantic vector representation of each
sentence by max pooling every dimension of their
transformed word vectors. After that, it generates
a semantic difference vector between two paired
sentences by concatenating their element-wise ab-
solute difference and the element-wise multiplica-
tion of their semantic vectors. Next, it uses a fully-
connected neural network to transfer the semantic
difference vector to a probability distribution over
similarity scores.

In spite of the simplicity of our neural network
system, the difference in performance between our
proposed model and the best performing systems
that participated in the STS shared task are less
than 0.1 absolute in almost all STS tracks and re-
sult in our model being ranked 3rd on primary
track of SemEval STS 2017.

References
Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng

Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
Manjunath Kudlur, Josh Levenberg, Rajat Monga,
Sherry Moore, Derek G. Murray, Benoit Steiner,
Paul Tucker, Vijay Vasudevan, Pete Warden, Mar-
tin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016.
Tensorflow: A system for large-scale machine learn-
ing. In Proceedings of the 12th USENIX Confer-
ence on Operating Systems Design and Implemen-
tation. USENIX Association, Berkeley, CA, USA,
OSDI’16, pages 265–283.

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel
Cer, Mona Diab, Aitor Gonzalez-Agirre, Weiwei
Guo, Inigo Lopez-Gazpio, Montse Maritxalar, Rada
Mihalcea, German Rigau, Larraitz Uria, and Janyce
Wiebe. 2015. Semeval-2015 task 2: Semantic tex-
tual similarity, english, spanish and pilot on inter-
pretability. In Proceedings of the 9th International
Workshop on Semantic Evaluation. pages 252–263.

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel
Cer, Mona Diab, Aitor Gonzalez-Agirre, Weiwei
Guo, Rada Mihalcea, German Rigau, and Janyce
Wiebe. 2014. Semeval-2014 task 10: Multilingual
semantic textual similarity. In Proceedings of the
8th International Workshop on Semantic Evaluation.
pages 81–91.

Eneko Agirre, Carmen Banea, Daniel Cer, Mona Diab,
Aitor Gonzalez-Agirre, Rada Mihalcea, German
Rigau, and Janyce Wiebe. 2016. Semeval-2016

task 1: Semantic textual similarity, monolingual
and cross-lingual evaluation. In Proceedings of the
10th International Workshop on Semantic Evalua-
tion. Association for Computational Linguistics, San
Diego, California, pages 497–511.

Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-
Agirre, and Weiwei Guo. 2013. Sem 2013 shared
task: Semantic textual similarity. In Proceedings of
the Main Conference and the Shared Task: Semantic
Textual Similarity. pages 32–43.

Eneko Agirre, Mona Diab, Daniel Cer, and Aitor
Gonzalez-Agirre. 2012. Semeval-2012 task 6: A pi-
lot on semantic textual similarity. In Proceedings of
the First Joint Conference on Lexical and Computa-
tional Semantics. pages 385–393.

Petr Baudis, Jan Pichl, Tomas Vyskocil, and Jan Se-
divy. 2016. Sentence pair scoring: Towards unified
framework for text comprehension. arXiv preprint
arXiv:1603.06127 .

Steven Bird, Ewan Klein, and Edward Loper.
2009. Natural Language Processing with Python.
O’Reilly Media.

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-
Gazpio, and Lucia Specia. 2017. Semeval-2017
task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In Proceedings of
the 11th International Workshop on Semantic Eval-
uation (SemEval-2017). Association for Computa-
tional Linguistics, Vancouver, Canada, pages 1–14.
http://www.aclweb.org/anthology/S17-2001.

François Chollet. 2015. Keras. https://github.
com/fchollet/keras.

Hua He, Kevin Gimpel, and Jimmy Lin. 2015a. Multi-
perspective sentence similarity modelling with con-
volutional neural networks. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing. pages 1576–1586.

Hua He and Jimmy Lin. 2016. Pairwise word inter-
action modelling with deep neural networks for se-
mantic similarity measurement. In Proceedings of
the 2016 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2015b. Delving deep into rectifiers: Surpass-
ing human-level performance on imagenet classifi-
cation. In Proceedings of the International Confer-
ence on Computer Vision (ICCV).

Vinod Nair and Geoffrey Hinton. 2010. Rectified lin-
ear units improve restricted boltzmann machines. In
Proceedings of the 27th International Conference on
Machine Learning (ICML).

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Empirical Methods in Natu-
ral Language Processing. pages 1532–1543.

Diederik P.Kingma and Jimmy Lei Ba. 2015. Adam:
A method for stochastic optimization. In Proceed-
ings of the 3rd International Conference on Learn-
ing Representations (ICLR).

Dominik Scherer, Andreas C. Muller, and Sven
Behnke. 2010. Evaluation of pooling operations
in convolutional architectures for object recognition.
In Proceedings of 20th International Conference on
Artificial Neural Networks (ICANN). pages 92–101.

133

