DT Team at SemEval-2017 Task 1: Semantic Similarity Using Alignments,
Sentence-Level Embeddings and Gaussian Mixture Model Output

Nabin Maharjan, Rajendra Banjade, Dipesh Gautam, Lasang J. Tamang and Vasile Rus
Department of Computer Science / Institute for Intelligent Systems
The University of Memphis
Memphis, TN, USA
{nmharjan, rbanjade, dgautam, 1 jtamang, vrus}@memphis.edu

Abstract

We describe our system (DT_Team) sub-
mitted at SemEval-2017 Task 1, Seman-
tic Textual Similarity (STS) challenge for
English (Track 5). We developed three dif-
ferent models with various features includ-
ing similarity scores calculated using word
and chunk alignments, word/sentence em-
beddings, and Gaussian Mixture Model
(GMM). The correlation between our sys-
tem’s output and the human judgments
were up to 0.8536, which is more than
10% above baseline, and almost as good
as the best performing system which was
at 0.8547 correlation (the difference is just
about 0.1%). Also, our system produced
leading results when evaluated with a sep-
arate STS benchmark dataset. The word
alignment and sentence embeddings based
features were found to be very effective.

1 Introduction

Measuring the Semantic Textual Similarity (STS)
is to quantify the semantic equivalence between
given pair of texts (Banjade et al., 2015; Agirre
et al., 2015). For example, a similarity score of
0 means that the texts are not similar at all while
a score of 5 means that they have same meaning.
In this paper, we describe our system DT_Team
and the three different runs that we submitted to
this year’s SemEval shared task on STS English
track (Track 5; Agirre et al. (2017)). We ap-
plied Support Vector Regression (SVR), Linear
Regression (LR) and Gradient Boosting Regressor
(GBR) with various features (see § 3.4) in order to
predict the semantic similarity of texts in a given
pair. We also report the results of our models when
evaluated with a separate STS benchmark dataset
created recently by the STS task organizers.

2 Preprocessing

The preprocessing step involved tokenization,
lemmatization, POS-tagging, name-entity recog-
nition and normalization (e.g. pc, pct, % are nor-
malized to pc). The preprocessing steps were same
as our DTSim system (Banjade et al., 2016).

3 Feature Generation

We generated various features including similar-
ity scores generated using different methods. We
describe next the word-to-word and sentence-to-
sentence similarity methods used in our system.

3.1 Word-to-Word Similarity

We used the word2vec (Mikolov et al., 2013)!
vectorial word representation, PPDB database
(Pavlick et al., 2015)?, and WordNet (Miller,
1995) to compute similarity between words.
Please see DTSim system description (Banjade
et al., 2016) for additional details.

3.2 Sentence-to-Sentence Similarity

3.2.1 Word Alignment Method

We lemmatized all content words and aligned
them optimally using the Hungarian algorithm
(Kuhn, 1955) implemented in the SEMILAR
Toolkit (Rus et al., 2013). The process is the
same as finding the maximum weight matching in
a weighted bi-partite graph. The nodes are words
and the weights are the similarity scores between
the word pairs computed as described in § 3.1. In
order to avoid noisy alignments, we reset the sim-
ilarity score below 0.5 (empirically set threshold)
to 0. The similarity score was computed as the
sum of the scores for all aligned word-pairs di-
vided by the total length of the given sentence pair.

"http://code.google.com/p/word2vec/
*http://www.cis.upenn.edu/ ccb/ppdb/

Proceedings of the 11th International Workshop on Semantic Evaluations (SemEval-2017), pages 120-124,
Vancouver, Canada, August 3 - 4,2017. (©2017 Association for Computational Linguistics

In some cases, we also applied a penalty for un-
aligned words which we describe in § 3.3

3.2.2 Interpretable Similarity Method

We aligned chunks across sentence-pairs and la-
beled the alignments, such as Equivalent or Spe-
cific as described in Maharjan et al. (2016). Then,
we computed the interpretable semantic score as
in the DTSim system (Banjade et al., 2016).

3.2.3 Gaussian Mixture Model Method

Similar to the GMM model we have proposed
for assessing open-ended student answers (Ma-
harjan et al., 2017), we represented the sentence
pair as a feature vector consisting of feature sets
{7,8,9,10,14} from § 3.4 and modeled the se-
mantic equivalence levels [0 5] as multivariate
Gaussian densities of feature vectors. We then
used GMM to compute membership weights to
each of these semantic levels for a given sentence
pair. Finally, the GMM score is computed as:

mem_wt; = w; N (x|, Z), i €[0,5]
i
5
gmm_score = Z mem_wt; * i
1=0

3.2.4 Compositional Sentence Vector Method

We used both Deep Structured Semantic Model
(DSSM; Huang et al. (2013)) and DSSM
with convolutional-pooling (CDSSM; Shen et al.
(2014); Gao et al. (2014)) in the Sent2vec tool® to
generate the continuous vector representations for
given texts. We then computed the similarity score
as the cosine similarity of their representations.

3.2.5 Tuned Sentence Representation Based
Method

We first obtained the continuous vector represen-
tations V4 and Vp for sentence pair A and B us-
ing the Sent2Vec DSSM or CDSSM models or
skip-thought model* (Zhu et al., 2015; Kiros et al.,
2015). Inspired by Tai et al. (2015), we then rep-
resented the sentence pairs by the features formed
by concatenating element-wise dot product V4.Vg
and absolute difference |V4 — Vp|. We used these
features in our logistic regression model which
produces the output pg. Then, we predicted the
similarity between the texts in the target pair as

3https://www.microsoft.com/en-
us/download/details.aspx?id=52365
*https://github.com/ryankiros/skip-thoughts

121

§ = r7pp, where rT = {1,2,3,4,5} is the ordi-
nal scale of similarity. To enforce that g is close to
the gold rating y, we encoded y as a sparse target
distribution p such that y = 77 p as:

y—lyl.i=ly] +1
ly] —y+1,i= |y
0, otherwise

pi =

where 1 < i < 5 and, |y| is floor operation.
For instance, given y = 3.2, it would give sparse p
=[00 0.8 0.2 0]. For building logistic model, we
used training data set from our previous DTSim
system (Banjade et al., 2016) and used image test
data from STS-2014 and STS-2015 as validation
data set.

3.2.6 Similarity Vector Method

We generated a vocabulary V' of unique words
from the given sentence pair (A, B). Then,
we generated sentence vectors as in the fol-
lowings: Vi = (wiq,Waq,.-Wpe) and Vg
(w1p, Wap, ... Wnp), Where n = |V] and w;q = 1, if
word; at position ¢ in V" has a synonym in sentence
A. Otherwise, w;, is the maximum similarity be-
tween word; and any of the words in A, com-
puted as: w;, = ma:cj»lelsim(wj,wordi). The
sim(wj,word;) is cosine similarity score com-
puted using the word2vec model. Similarly, we
compute Vg from sentence B.

3.2.7 Weighted Resultant Vector Method

We combined word2vec word representations to
obtain sentence level representations through vec-
tor algebra. We weighted the word vectors corre-
sponding to content words. We generated resultant
vector for A as R4 = Zilf” 0; * word;, where
the weight 0; for word; was chosen as word; €
{noun = 1.0, verb = 1.0, adj = 0.2, adv = 0.4, oth-
ers (e.g. number) = 1.0}. Similarly, we computed
resultant vector 2 for text B. The weights were
set empirically from training data. We then com-
puted a similarity score as the cosine of R4 and
Rp. Finally, we penalized the similarity score by
the unalignment score (see § 3.3).

3.3 Penalty

We applied the following two penalization strate-
gies to adjust the sentence-to-sentence similarity
score. It should be noted that only certain sim-
ilarity scores used as features of our regression
models were penalized but we did not penalize

the scores obtained from our final models. Unless
specified, similarity scores were not penalized.

3.3.1 Crossing Score

Crossing measures the spread of the distance be-
tween the aligned words in a given sentence pair.
In most cases, sentence pairs with higher degree
of similarity have aligned words in same position
or its neighborhood. We define crossing crs as:
Zw¢€A7 wjE€B, aligned(w;,w;) |Z - =7|
max(|Al,|B]) * (#alignments)

crs =

where aligned(w;, w;) refers to word wj at in-
dex 7 in A and w); at index j in B are aligned.
Then, the similarity score was reset to 0.3 if crs >
0.7. The threshold 0.7 was empirically set based
on evaluations using the training data.

3.3.2 Unalignment Score

We define unalignment score similar to alignment
score (see § 3.2.1) but this time the score is calcu-
lated using unaligned words in both A and B as:
unalign_score = ‘A‘+|B|_|2;|(flﬁgnments). Then,
the similarity score was penalized as in the follow-

ings:

score® = (1 — 0.4 x unalign_score) * score
where the weight 0.4 was empirically chosen.

3.4 Feature Selection

We generated and experimented with many fea-
tures. We describe here only those features used
directly or indirectly by our three submitted runs
which we describe in § 4. We used word2vec rep-
resentation and WordNet antonym and synonym
for word similarity unless anything else is men-
tioned specifically.

1. {w2vwa, ppdbwa, ppdb_wa_pen_ua}:
similarity scores generated using word
alignment based methods (pen_ua for scores

penalized by unalignment score).
{gmm}: output of Gaussian Mixture Model.

. {dssm, cdssm}: similarity scores using
DSSM and CDSSM models (see § 3.2.4).

{dssm_lr, skipthought_r}: similarity
scores using logistic model with sentence
representations from DSSM and skip-thought
models (see § 3.2.5).

. {sim_vec}: score using similarity vector
method (see § 3.2.6).

122

. {res_vec}: score using the weighted resul-
tant vector method (see § 3.2.7).

. {interpretable}: score calculated using in-
terpretable similarity method (§ 3.2.2).

. {noun_wa, verb-wa, adj_wa, adv_-wa}:
Noun-Noun, Adjective-Adjective, Adverb-
Adverb, and Verb-Verb alignment scores us-
ing word2vec for word similarity.

. {noun_verb_mult}: multiplication of Noun-
Noun similarity scores and Verb-Verb simi-
larity scores.

{abs_dif f_t}:
% where C;, and C, are the counts
of tokens of type ¢ € {all tokens, adjectives,
adverbs, nouns, and verbs} in sentence A

and B respectively.

10. absolute difference as

11. {overlap_pen}: unigram overlap between
text A and B with synonym check given by:
score = %. Then penalized by

crossing followed by unalignment score.

12. {noali}: number of NOALI relations in
aligning chunks between texts relative to the

total number of alignments (see § 3.2.2).

13. {align, unalign}: fraction of aligned/non-

aligned words in the sentence pair.

Cu

{mmr_t}: min to max ratio as 5t where Cyy
and C}z are the counts of type ¢ € {all, adjec-
tives, adverbs, nouns, and verbs} for shorter
text 1 and longer text 2 respectively.

14.

4 Model Development

Training Data. We used data released in previous
shared tasks (see Table 1) for the model develop-
ment (see § 5 for STS benchmarking).

Models and Runs. Using the combination of
features described in § 3.4, we built three different
models corresponding to the three runs (R1-3)
submitted.

R1. Linear SVM Regression model (SVR;
e =01, C 1.0) with a set of 7 features:
overlap_pen, ppdb_wa_pen_ua, dssm, dssm_r,
noali, abs_dif f _all tkns, mmr_all _tkns.

R2. Linear regression model (LR; default weka
settings) with a set of 8 features: dssm, cdssm,
gmm, reswvec, skipthoughtlr, sim_vec,
aligned, noun_wa.

Data set Count Release time
Deft-news 299 STS2014-Test
Images 749 STS2014-Test
Images 750 STS2015-Test
Headlines 742 STS2015-Test
Answer-forums 375 STS2015-Test
Answer-students 750 STS2015-Test
Belief 375 STS2015-Test
Headlines 244 STS2016-Test
Plagiarism 230 STS2016-Test
Total 4514

Table 1: Summary of training data.

1st
0.8547

R1 R2 R3 Baseline
0.8536 0.8360 0.8329 0.7278

Table 2: Results of our submitted runs on test data
(1% is the best result among the participants).

R3. Gradient boosted regression model (GBR;
estimators 1000, max_depth = 3) which
includes 3 additional features: w2v_wa, ppdb_wa,
overlap to feature set used in Run 2.

We used SVR and and LR models in Weka
3.6.8. We used GBR model using sklearn python
library. We evaluated our models on training data
using 10-fold cross validation. The correlation
scores in the training data were 0.797, 0.816 and
0.845 for R1, R2, and R3, respectively.

5 Results

Table 2 presents the correlation () of our sys-
tem outputs with human ratings in the evaluation
data (250 sentence pairs from Stanford Natural
Language Inference data (Bowman et al., 2015)).
The correlation scores of all three runs are 0.83
or above, on par with top performing systems.
All of our systems outperform the baseline by a
large margin of above 10%. Interestingly, R1 sys-
tem is at par with the 1% ranked system differing
by a very small margin of 0.009 (<0.2%). Fig-
ure 1 presents the graph showing R1 system out-
put against human judgments (gold scores). It
shows that our system predicts relatively better for
similarity scores between 3 to 5 while the system
slightly overshoots the prediction for the gold rat-
ings in the range of 0 to 2. In general, it can be
seen that our system works well across all similar-
ity levels.

Our 11 features had a correlation of 0.75 or

123

dssm (0.8254), ppdb_wa_pen_ua (0.8273),
ppdb_wa (0.8139), cdssm (0.8013),
dssm_lr (0.8135), overlap (0.8048)

Table 3: A set of highly correlated features with
gold scores in test data.

Figure 1: R1 system output in evaluation data plot-
ted against human judgments (in ascending order).

above when compared with gold scores in test
data. In Table 3, we list only those features
having correlations of 0.8 or above. Similarity
scores computed using word alignment and com-
positional sentence vector methods were the best
predictive features.

STS Benchmark (Agirre et al., 2017). We
also evaluated our models on a benchmark dataset
which consists of 1379 pairs and was created by
the task organizers. We trained our three runs with
the benchmark training data under identical set-
tings. We used benchmark development data only
for generating features from § 3.2.5 (as validation
dataset). The correlation scores for k1, R2 and
R3 systems were:

In Dev: 0.800, 0.822, 0.830 and

In Test: 0.755, 0.787, 0.792

All of our systems outperformed best baseline
benchmark system (Dev = 0.77, Test = 0.72). In-
terestingly, R3 was the best performing while R1
was the least performing among the three. As
such, generalization was found to improve with in-
creasing number of features (#features: 7, 8 and 11
for R1, R2 and R3 respectively).

6 Conclusion

We presented our DT _Team system submitted in
SemEval-2017 Task 1. We developed three differ-
ent models using SVM regression, Linear regres-
sion and Gradient Boosted regression for predict-
ing textual semantic similarity. Overall, the out-
puts of our models highly correlate (correlation up
to 0.85 in STS 2017 test data and up to 0.792 on
benchmark data) with human ratings. Indeed, our
methods yielded highly competitive results.

References

Eneko Agirre, , Daniel Cer, Mona Diabe, , Inigo
Lopez-Gazpioa, and Specia Lucia. 2017. Semeval-
2017 task 1: Semantic textual similarity multilingual
and crosslingual focused evaluation.

Eneko Agirre, Carmen Baneab, Claire Cardiec, Daniel
Cer, Mona Diabe, Aitor Gonzalez-Agirrea, Weiwei
Guof, Inigo Lopez-Gazpioa, Montse Maritxalara,
Rada Mihalceab, et al. 2015. Semeval-2015 task
2: Semantic textual similarity, english, spanish and
pilot on interpretability. In Proceedings of the 9th
international workshop on semantic evaluation (Se-
mEval 2015). pages 252-263.

Rajendra Banjade, Nabin Maharjan, Dipesh Gautam,
and Vasile Rus. 2016. Dtsim at semeval-2016 task
I: Semantic similarity model including multi-level
alignment and vector-based compositional seman-
tics. Proceedings of SemEval pages 640-644.

Rajendra Banjade, Nobal B Niraula, Nabin Mahar-
jan, Vasile Rus, Dan Stefanescu, Mihai Lintean, and
Dipesh Gautam. 2015. Nerosim: A system for mea-
suring and interpreting semantic textual similarity.
In Proceedings of the 9th International Workshop on
Semantic Evaluation (SemEval 2015). pages 164—
171.

Samuel R Bowman, Gabor Angeli, Christopher Potts,
and Christopher D Manning. 2015. A large anno-
tated corpus for learning natural language inference.
arXiv preprint arXiv:1508.05326 .

Jianfeng Gao, Li Deng, Michael Gamon, Xiaodong
He, and Patrick Pantel. 2014. Modeling interest-
ingness with deep neural networks. US Patent App.
14/304,863.

Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng,
Alex Acero, and Larry Heck. 2013. Learning deep
structured semantic models for web search using
clickthrough data. In Proceedings of the 22nd ACM
international conference on Conference on informa-
tion & knowledge management. ACM, pages 2333—
2338.

Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov,
Richard S Zemel, Antonio Torralba, Raquel Urta-
sun, and Sanja Fidler. 2015. Skip-thought vectors.
arXiv preprint arXiv:1506.06726 .

Harold W Kuhn. 1955. The hungarian method for the
assignment problem. Naval research logistics quar-
terly 2(1-2):83-97.

Nabin Mabharjan, Rajendra Banjade, Nobal B Niraula,
and Vasile Rus. 2016. Semaligner: A method and
tool for aligning chunks with semantic relation types
and semantic similarity scores. CRF 82:62-56.

Nabin Maharjan, Rajendra Banjade, and Vasile Rus.
2017. Automated assessment of open-ended student
answers in tutorial dialogues using gaussian mixture
models (in press). In FLAIRS Conference.

124

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems. pages 3111-3119.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM 38(11):39—
41.

Ellie Pavlick, Pushpendre Rastogi, Juri Ganitkevitch,
Benjamin Van Durme, and Chris Callison-Burch.
2015. Ppdb 2.0: Better paraphrase ranking, fine-
grained entailment relations, word embeddings, and
style classification .

Vasile Rus, Mihai C Lintean, Rajendra Banjade,
Nobal B Niraula, and Dan Stefanescu. 2013. Semi-
lar: The semantic similarity toolkit. In ACL (Confer-
ence System Demonstrations). Citeseer, pages 163—
168.

Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng,
and Grégoire Mesnil. 2014. A latent semantic model
with convolutional-pooling structure for information
retrieval. In Proceedings of the 23rd ACM Inter-
national Conference on Conference on Information
and Knowledge Management. ACM, pages 101-
110.

Kai Sheng Tai, Richard Socher, and Christopher D
Manning. 2015. Improved semantic representations
from tree-structured long short-term memory net-
works. arXiv preprint arXiv:1503.00075 .

Yukun Zhu, Ryan Kiros, Richard Zemel, Ruslan
Salakhutdinov, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Aligning books and movies:
Towards story-like visual explanations by watch-
ing movies and reading books. arXiv preprint
arXiv:1506.06724 .

