IITT-UHH at SemEval-2017 Task 3: Exploring Multiple Features for
Community Question Answering and Implicit Dialogue Identification

Titas Nandi', Chris Biemann?, Seid Muhie Yimam?,
Deepak Gupta', Sarah Kohail?, Asif Ekbal' and Pushpak Bhattacharyya'

'Indian Institute of Technology Patna
2Universitit Hamburg Germany
{titas.eel3,deepak.pcsl6,asif,pb}@iitp.ac.in
{biemann, yimam, kohail}@informatik.uni-hamburg.de

Abstract

In this paper we present the system for An-
swer Selection and Ranking in Commu-
nity Question Answering, which we build
as part of our participation in SemEval-
2017 Task 3. We develop a Support Vector
Machine (SVM) based system that makes
use of textual, domain-specific, word-
embedding and topic-modeling features.
In addition, we propose a novel method
for dialogue chain identification in com-
ment threads. Our primary submission
won subtask C, outperforming other sys-
tems in all the primary evaluation met-
rics. We performed well in other English
subtasks, ranking third in subtask A and
eighth in subtask B. We also developed
open source toolkits for all the three En-
glish subtasks by the name cQARank!.

1 Introduction

This paper presents the system built for partic-
ipation in the SemEval-2017 Shared Task 3 on
Community Question Answering (CQA). The task
aims to classify and rank a candidate text c in
relevance to a target text . Based on the na-
ture of the candidate and target texts, the main
task is subdivided into three subtasks in which
the teams are expected to solve the problem of
Question-Comment similarity, Question-Question
similarity and Question-External Comment simi-
larity (Nakov et al., 2017).

In this work, we propose a rich feature-based sys-
tem for solving these problems. We create an ar-
chitecture which integrates textual, semantic and
domain-specific features to achieve good results in
the proposed task. Due to the extremely noisy na-
ture of the social forum data, we also develop a

"https://github.com/TitasNandi/cQARank

90

customized preprocessing pipeline, rather than us-
ing the standard tools. We use Support Vector Ma-
chine (SVM) (Cortes and Vapnik, 1995) for clas-
sification, and its confidence score for ranking.
We initially define a generic set of features to de-
velop a robust system for all three subtasks, then
include additional features based on the nature of
the subtasks. To adapt the system to subtasks
B and C, we include features extracted from the
scores of the other subtasks, propagating mean-
ingful information essential in an incremental set-
ting. We propose a novel method for identifica-
tion of dialogue groups in the comment thread by
constructing a user interaction graph and also in-
corporate features from this graph in our system.
Our algorithm outputs mutually disjoint groups of
users who are involved in conversation with each
other in the comment thread.

The rest of the paper is organized as follows: Sec-
tion 2 describes the related work. Sections 3, 4,
and 5 elucidate the system architecture, features
used and algorithms developed. Section 6 pro-
vides experimentation details and reports the of-
ficial results.

2 Related Work

In Question Answering, answer selection and
ranking has been a major research concern in Nat-
ural Language Processing (NLP) during the past
few years. The problem becomes more interest-
ing for Community Question Answering due to
the highly unstructured and noisy nature of the
data. Also, domain knowledge plays a major role
in such an environment, where meta data of users
and context based learning can capture trends well.
The task on Community Question Answering in
SemEval began in 2015, where the objective was
to classify comments in a thread as Good, Bad or
PotentiallyUseful. In subsequent years, the task

Proceedings of the 11th International Workshop on Semantic Evaluations (SemEval-2017), pages 90-97,
Vancouver, Canada, August 3 - 4,2017. (©2017 Association for Computational Linguistics

was extended and modified to focus on ranking
and duplicate question detection in a cross domain
setting.

In their 2015 system, Belinkov (2015) used
word vectors of the question and of the comment,
various text-based similarities and meta data fea-
tures. Nicosia (2015) derived features from a com-
ment in the context of the entire thread. They
also modelled potential dialogues by identifying
interlacing comments between users. Establishing
similarity between Questions and External com-
ments (subtask C) is quite challenging, which can
be tackled by propagating useful context and in-
formation from other subtasks. Filice (2016) in-
troduced an interesting approach of stacking clas-
sifiers across subtasks and Wu & Lan (2016) pro-
posed a method of reducing the errors that propa-
gated as a result of this stacking.

3 System Description

3.1 System Pipeline

The system architecture of our submission to sub-
task A is depicted in Figure 1. We explain the
pre-processing pipeline in the next subsection.
The cleaned data is fed into our supervised ma-
chine learning framework. We train our word-
embedding model on the unannotated and train-
ing data® provided by the organizers, and train a
probabilistic topic model on the training data. The
detailed description of features is provided in the
following section. After obtaining the feature vec-
tors, we perform feature selection using wrapper
methods to maximize the accuracy on the devel-
opment set. We Z-score normalize the feature vec-
tors and feed them to a SVM. We tune the hyper-
parameters of SVM and and generate classifica-
tion labels and probabilities, the latter being used
for computing the MAP score.

3.2 Preprocessing Pipeline

Due to the highly unstructured, spelling and gram-
matical error-prone nature of the data, adaptation
of any standard tokenization pipeline was not well
motivated. We customized the preprocessing ac-
cording to the nature of the data. We unescaped
HTML special characters and removed URLs, e-
mails, HTML tags, image description tags, punc-
tuations and slang words (from a defined dictio-
nary). Finally, we expanded apostrophe words and

http://alt.qgcri.org/semeval2017/
task3/index.php?id=data-and-tools

91

removed stopwords.
The cleaned data is then used in all further experi-
ments.

4 Features

We use a rich set of features to capture the textual
and semantic relevance between two snippets of
text. These features are categorized into several
broad classes:

4.1 String Similarity Features

This set of features makes use of a number of
string matching algorithms to compute the string
similarity between the question and comment.
This generates a continuous set of values for ev-
ery comment, and is apt for a baseline system.
The bag of algorithms used is a careful combina-
tion of various string similarity, metric distances
and normalized string distance methods, capturing
the overall profiling of texts. The string similar-
ity functions used include Longest Common Sub-
sequence (LCS), Q-Gram (g = 1,2,3), Weighted
Levenshtein and Optimal String Alignment. The
normalized similarity algorithms used are Jaro-
Winkler, Normalized Levenshtein, n-gram (n
1,2,3), cosine-similarity (n = 1,2,3), Jaccard Index
(n = 1,2,3), and Sorensen-Dice coefficient (n
1,2,3). The metric distance methods implemented
are Levenshtein, Damerau, and Metric LCS.

4.2 Word Embedding Features

Semantic features constitute the core of our fea-
ture engineering pipeline. These try to capture the
proximity between the meanings encoded in the
word sequences of question and comments. We
train word embeddings using Word2Vec (Mikolov
et al., 2013) on the unannotated and given train-
ing data. The unannotated data is in the same
format as the training data, except that the com-
ments are not annotated. We performed experi-
ments with different vector sizes (N = 100, 200,
300), and finally settled on using 100 dimensional
word vectors. We also used a pre-trained model
on Google News dataset in order to compare the
performance of the two models. Interestingly, the
domain-specific model trained on the unannotated
and training data proved to be better than the one
trained on Google News dataset, hence we used
the former in building our final system.

Since we wanted a feature vector corresponding to
each comment in the thread, we had to transform

Python scripts

String
Similarity
Customized Features
Pipeline v
e

Cleaned data

Sentence vectors
Word2Vec
Training

Unannotated +
training data

h 4

XML data Preprocessing

Parsing

Error Analysis

MAP

A

System Ewvaluation

Fig 1 - System Pipeline for
Subtask A

these trained word vectors into sentence vectors.
Two approaches were considered for this:

e Construct the sentence vector by taking an
average of the vectors of all words that con-
stitute the sentence.

Construct the sentence vector as a weighted
average of all the word vectors constituting
that sentence. Here the weight corresponds to
the Inverse Document Frequency (IDF) value
of the word in the thread.

Although the first approach has an evident disad-
vantage of not assigning importance to the key-
words in the sentence (which is why we resorted
to the IDF-based weighted averaging), it yielded
better results, which is why we included it in our
final system.

We extract two sets of features from these sentence
vectors:

e The vector subtraction of the comment vector
from the vector of the question at the head of
the thread is used as the scoring vector for
that comment.

e We calculate the cosine similarity, Euclidean
and Manhattan distances between question
and comment vectors.

4.3 Topic Modeling Features

To capture the thematic similarity between the
question and comment texts, we train a LDA topic

Keyword+NE
Features

Answer Quality Score [

92

Wectors
Feature Feature
Engineering “ Selection
Fy F Y
Domain

Specific + User
Features

training
data

SWM Confidence Scores

Z-Score
Normalization

Topic Modelling

SVM Parameters

o —

model on the training data using Mallet (McCal-
Ium, 2002). We perform different experiments by
varying the number of topics (n = 10, 20, 50, 100)
and obtain the best performance with 20 topics.
We generate a topic vocabulary of 50 words for
each topic class. The following features were en-
tailed from these topic distributions and words:

e The vector subtraction of question and com-
ment topic vectors, measuring the topical dis-
tance between the two snippets of text.
Cosine, Euclidean and Manhattan distance
between the topic vectors.

We generate a vocabulary for each text by
taking the union of topic words of its first 10
most probable topic classes.

10
Vocabulary(T') = |J topic_words(t;)
=1

where each t; rei)resents one of the top 10
topic classes for comment or question 7.

We then determine the word overlap of the
topic vocabulary of the question with (i) the
entire comment string and (ii) the topic vo-
cabulary of the comment.

4.4 Domain Specific Features

In CQA sites, comments in a thread typically re-
flect an underlying discussion about a question,
and there is usually a strong correlation among
the nearby comments in the thread. Users reply
to each other, ask for further details, can acknowl-

edge others’ answers or can tease other users.
Therefore, as discussed in (Barrén-Cedeiio et al.,
2015), comments in a common thread are strongly
interconnected.

We extract various features from the meta data of
the thread and from our surface observation of the
thread’s structure and properties. We extract if the
comment is written by the asker of the question.
In the case of repeated comments by the asker,
we monitor if the comment is an acknowledge-
ment (thanks, thank you, appreciate) or a further
question. With the likely assumption that the com-
ments at the beginning of a thread will be more
relevant to the question, we have a feature captur-
ing the position of comment in the thread. We also
compute the coverage (the ratio of the number of
tokens) of question by the comment and comment
by the question.

We further try to model explicit conversations
among users in the thread. We do it in two ways:

e Repeated and interlacing comments by a user
in the same thread

e Explicitly mentioning the name of some pre-
vious user in the comment

The case of implicit dialogues (where the intent of
the conversation has to be inferred solely from the
context of the comment by a user) is discussed in a
separate section later. These domain-specific fea-
tures proved to be quite effective in classification,
and thus form an integral part of our system.

4.5 Keyword and Named Entity Features

Finding the focus of the question and comment
is important in measuring if the comment specifi-
cally covers the aspects of the question. We extract
keywords from the texts using the RAKE keyword
extraction algorithm (Rose et al., 2010), and derive
features from the keyword match between ques-
tion and comment. We also use the relative impor-
tance of common keywords as feature values.

In case of factoid questions, or especially in sub-
task B, Named Entity Recognition becomes an
important tool for computing the relevance of a
text. We extract named entities using the Stanford
Named Entity Recognizer (Finkel et al., 2005)
and classify words into seven entity categories
including PERSON, LOCATION, ORGANIZA-
TION, DATE, MONEY, PERCENT, and TIME.
We compute if both question and comment have
named entities, and if these belong to the same

classes, if the named entity is an answer to a Wh-
type question or not.

4.6 Implicit Dialogue Identification

Data driven error analysis on the Qatar Living
Data indicated the presence of implicit dialogue
chains. Users were almost always engaging in
conversations with each other but this could only
be captured by the content of their comment. Here
we propose a novel algorithm based on construc-
tion of a user interaction graph to model these
potential dialogues. The components of our con-
struction are as follows:

e Vertices - Users in the comment thread and
the Question

o Edges - Directed edges showing interaction

o Edge Weights - Numerical estimate of the in-
teraction

Algorithm 1 Dialogue Group Detection

1: Initialize:
U — User Graph > Initially Empty
D — Dialogue Graph > Initially Empty
@ — Question node > Node indexed 0

2: procedure DIALOGUE IDENTIFICATION

3 V(U) < V({U)U{Q} > AddQ to vertex set of U
4 for each comment ¢, in thread do

5: u; commented c,.

6 if u; is a new user then

7 VU)—V(U)U{u;}

8 V(D) — V(D) U {u;}

9

: end if
10: for Q and each previous comment ¢, do
11: u; commented ¢,
12: if i # j and e;; doesn’t exist in E(U) then
13: Adde;; in E(U) > Add e;; in edge set
of U
14: end if
15: w(e;;) < Compute_Weight(cz, ¢y, i, j)
16: end for
17: e — max; w(e;;) > Pick max outgoing edge
18: if j # 0 and e does not exist in E(D) then
19: Add e in E(D)
20: end if
21: end for
22: Find weakly connected components in D

23: end procedure

The algorithm to construct this dynamic graph
is given in Algorithm 1. We simultaneously
construct two graphs, a user graph and a dialogue
graph. Initially, the user graph has the question
node and the dialogue graph is empty. We add
new users to the graphs according to the time-
stamp of their occurrence in the thread. For each
new comment, we add edges to each previous user
and the question, in the user graph for the user

who commented. Then we pick the maximum
outgoing edge to some previous user from the
user who commented, and add that edge in the
dialogue graph. Finally, we find the weakly con-
nected components (WCCs) in the dialogue graph
and the users in each such WCC are in mutual
dialogue. Note that the user graph at the end of
each iteration depicts the current conversational
interaction of the user who commented, with
respect to all other users in the thread.

Algorithm 2 Compute Weight Function

1: procedure COMPUTE_WEIGHT(cy, Cy, ¢, j)

u; commented ¢,

u; commented ¢,

€ij < 0.0

if user u; explicitly mentions user u; in comment
then

eij +— eij + 1.0
end if

6 > Explicit dialogue
7:

8: ¢z — {w1, w2, ..., wik}

9 ’

0

> w; is the i*" word in ¢q
’ !
Cy — {wl, Wy veuy wl}
tr_score «— (max cos(Va,, v,))/k
1<m<k 1<n<l "

11: t,. « topic vector for ¢,

12: t, « topic vector for ¢,

13: to_score «— cos(t;, t;) > Topic similarity score
14: eij < eij + tr_score +to_score > Edge weight
15: return e;;

16: end procedure

The main part of the algorithm is where we
compute the edge weights between a pair of users
after some comment, see Algorithm 2 for de-
tails. We have three components that constitute
the weight:

o if the user mentions the other user explicitly

e we calculate the score of reformulating one
comment from the other by closest word
match based on cosine scores of word vectors
(tr_score)

e cosine of the topic vectors of a pair of com-
ments (fo_score)

In addition to identifying latent dialogue groups,
we also extract features from this graph and these
features prove to be very helpful in classification.

4.7 Classifier

We use an SVM classifier as implemented in Lib-
SVM (Chang and Lin, 2011) for classification.
We experiment with different kernels (Hsu et al.,
2003), and achieve the best results with the RBF
kernel, which we use to train the model for our pri-
mary submission. We also achieve comparable re-

sults with the linear kernel and L2-regularized lo-
gistic regression. The ranking score for a question-
comment pair in subtask A is the calculated prob-
ability of the pair to be classified as Good.

The ranking score for subtask B is the SVM prob-
ability score for the original question-related ques-
tion pair multiplied by the reciprocal search engine
rank provided in the data.

For subtask C, the scoring value is the sum of the
log probabilities of the SVM scores of all subtasks
final_score = log (sum_A) + log (svm_B) +
log (sum_C)

5 Stacking features for other subtasks

We implemented a generic system for tackling se-
mantic similarity for any two snippets of text. We
further fine tuned it with domain specific features
for subtask A. For subtasks B and C, we again
adopted this generic system with slight modifica-
tions. But, the strong interconnectivity and incre-
mental nature of the subtasks motivated the devel-
opment of a stacking strategy where we propagate
useful information from other subtasks as features
for the present subtask and re-run the classifier.
Filice (2016) developed a stacking strategy that we
adopt with modifications.

For subtask B, we consider the scores for subtasks
A and C as probability distributions and calcu-
late various features and correlation coefficients
(Spearmann, Kendall, Pearson) over these distri-
butions.

For subtask C, we calculate feature values from the
SVM scores of all three subtasks, and re-run our
system with these stacking features. These fea-
tures include average, minimum and maximum of
subtask A and B scores, and binary features cap-
turing if these probability scores are above 0.5.

6 Experimentation and Results

We extensively experimented with a lot of feature
engineering. Notable features that were discarded
in the feature ablation process are:

e Statistical Paraphrasing: We found the top
10 semantically related words corresponding
to every word in the comment, based on word
vectors and did an n-gram matching (n =
1,2,3) on the extended wordlist.

e Doc2Vec: We also used Doc2Vec (Le and
Mikolov, 2014) to generate sentence vectors
directly, but these degraded the results.

[Features | Development Set 2017]
Subtask A MAP AvgRec MRR P R F1 Accuracy
All Features 65.50 84.86 71.96 58.43 62.71 60.50 72.54
All — string features 65.53 84.90 72.19 57.84 62.71 60.18 72.17
All — embedding features 62.11 81.23 69.00 53.03 53.42 53.23 68.52
All — domain features 61.85 81.06 69.80 54.46 54.52 54.49 69.47
All — topic features 65.15 84.79 72.37 59.02 61.98 60.47 72.83
All — keyword features 65.73 84.65 71.94 57.98 62.59 60.20 72.25
IR Baseline 53.84 72.78 63.13 - - - -
Subtask B
All Features 73.03 88.77 78.33 72.39 45.33 55.75 69.20
All — string features 73.46 88.83 78.95 72.87 43.93 54.81 69.00
All — embedding features 73.91 89.11 79.33 71.53 45.79 55.84 69.00
All — domain features 73.07 88.77 78.33 71.77 41.59 52.66 68.00
All — topic features 72.95 88.07 78.17 67.86 44.39 53.67 67.20
All — keyword features 73.55 88.99 79.33 72.93 45.33 55.91 69.40
All — stacking features 72.95 88.64 78.67 71.90 40.65 51.94 67.80
IR Baseline 71.35 86.11 76.67 - - - -
Subtask C
All Features 36.09 41.13 39.89 18.42 37.10 24.62 84.32
All — string features 36.85 40.27 39.72 16.81 35.07 22.72 83.54
All — embedding features 39.39 45.09 45.01 17.48 47.83 25.60 80.82
All — domain features 36.83 40.68 39.69 17.21 35.07 23.09 83.88
All — topic features 35.89 41.18 40.50 16.98 38.84 23.63 82.68
All — keyword features 35.39 41.17 38.57 18.58 37.97 24.95 84.24
All — stacking features 36.57 41.85 40.80 16.80 36.81 23.07 83.06
IR Baseline 30.65 34.55 35.97 - - - -
Runs Test Set 2017
Subtask A MAP AvgRec MRR P R F1 Accuracy
Primary 86.88 92.04 91.20 73.37 74.52 73.94 72.70
Contrastive 1 86.35 91.74 91.40 79.42 51.94 62.80 68.02
Contrastive 2 85.24 91.37 90.38 81.22 57.65 67.43 71.06
IR Baseline 72.61 79.32 82.37 - - - -
Subtask B
Primary 43.12 79.23 47.25 26.85 71.17 38.99 58.75
Contrastive 1 42.29 78.41 46.40 32.66 59.51 42.17 69.77
Contrastive 2 42.38 78.59 46.82 32.99 59.51 42.45 70.11
IR Baseline 41.85 77.59 46.42 - - - -
Subtask C
Primary 15.46 33.42 18.14 08.41 51.22 14.44 83.03
Contrastive 1 15.43 33.78 17.52 09.45 54.07 16.08 84.23
Contrastive 2 14.00 30.53 14.65 05.98 85.37 11.17 62.06
IR Baseline 09.18 21.72 10.11 - - - -

Table 1: Feature Ablation Results on Development Set and Runs on Test Set

Our primary submission for subtasks A and B uses
SVM with an RBF kernel for classification as this
yielded the best results on the dev set. We also
achieved similar results with the linear and L2-
regularized logistic regression classifiers and we
use these for our contrastive submissions. All the
submissions comprised of same number of fea-
tures. For subtask C, we oversample the training
data using the SMOTE (Chawla et al., 2002) tech-
nique in the ImbalancedLearn® toolkit, due to the
highly skewed distribution of labels. We use reg-
ular SMOTE for our primary and SMOTE SVM
for our first contrastive submission. For the sec-

*https://github.com/
scikit—-learn—-contrib/imbalanced-learn

95

ond contrastive submission, we integrate the fea-
ture sets of subtasks A and B directly in the feature
set of subtask C.

The feature ablation results on the development
set and the results of different runs on the test set
are presented in Table 1. It reports the system
performance on all evaluation metrics including
Mean Average Precision (MAP), Average Recall
(AvgRec), Mean Reciprocal Rank (MRR), Preci-
sion (P), Recall (R), F1-score (1) and Accuracy.

7 Conclusion

We establish the importance of domain specific
and dialogue identification features in tackling the
given task. In future work, we would like to fo-

cus on extracting more information from inter-
comment dependencies. This should improve our
algorithm for dialogue group detection and model
conversational activity better. We also wish to
work on a Deep Learning architecture for handling
this, as in (Wu and Lan, 2016) and (Guzman et al.,
2016). The problem can be modeled as a semi-
supervised classification task, where the unanno-
tated data can help supervised classification. Sub-
task C still presents a challenging research prob-
lem and we will investigate novel methods to in-
tegrate results from other subtasks to tackle this
subtask better.

References

Alberto Barréon-Cedefio, Simone Filice, Giovanni
Da San Martino, Shafiq Joty, Lluis Marquez, Preslav
Nakov, and Alessandro Moschitti. 2015. Thread-
Level Information for Comment Classification in
Community Question Answering. In Proceedings
of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing
(Volume 2: Short Papers). Association for Compu-
tational Linguistics, Beijing, China, pages 687-693.
http://www.aclweb.org/anthology/P15-2113.

Yonatan Belinkov, Mitra Mohtarami, Scott Cyphers,
and James Glass. 2015. VectorSLU: A Continu-
ous Word Vector Approach to Answer Selection in
Community Question Answering Systems. In Pro-
ceedings of the 9th International Workshop on Se-
mantic Evaluation (SemEval 2015). Association for
Computational Linguistics, Denver, Colorado, pages

282-287. http://www.aclweb.org/anthology/S15-
2048.

Chih-Chung Chang and Chih-Jen Lin. 2011.
LIBSVM: A library for support vector
machines. ACM TIST 2(3):27:1-27:27.

https://doi.org/10.1145/1961189.1961199.

Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O.
Hall, and W. Philip Kegelmeyer. 2002. SMOTE:
synthetic minority over-sampling technique. Jour-
nal of artificial intelligence research 16:321-357.

Corinna Cortes and Vladimir Vapnik. 1995. Support-
vector networks. Machine learning 20(3):273-297.

Simone Filice, Danilo Croce, Alessandro Moschitti,
and Roberto Basili. 2016. KeLP at SemEval-
2016 Task 3: Learning Semantic Relations be-
tween Questions and Answers. In Proceedings
of the 10th International Workshop on Semantic
Evaluation (SemEval-2016). Association for Com-
putational Linguistics, San Diego, California, pages
1116-1123. http://www.aclweb.org/anthology/S16-
1172.

96

Jenny Rose Finkel, Trond Grenager, and Christopher
Manning. 2005. Incorporating Non-local Informa-
tion into Information Extraction Systems by Gibbs
Sampling. In Proceedings of the 43rd Annual Meet-
ing of the Association for Computational Linguis-
tics (ACL’05). Association for Computational Lin-
guistics, Ann Arbor, Michigan, pages 363-370.
https://doi.org/10.3115/1219840.1219885.

Francisco Guzman, Preslav Nakov, and Lluis Marquez.
2016. MTE-NN at SemEval-2016 Task 3: Can
Machine Translation Evaluation Help Community
Question Answering? In Proceedings of the
10th International Workshop on Semantic Evalu-
ation (SemEval-2016). Association for Computa-
tional Linguistics, San Diego, California, pages
887-895. http://www.aclweb.org/anthology/S16-
1137.

Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen
Lin. 2003. A practical guide to support vec-
tor classification. Technical report, Department
of Computer Science, National Taiwan University.
http://www.csie.ntu.edu.tw/ cjlin/papers.html.

Quoc V. Le and Tomas Mikolov. 2014. Dis-
tributed Representations of Sentences and Docu-
ments. In Proceedings of the 31th International
Conference on Machine Learning, ICML 2014, Bei-
jing, China, 21-26 June 2014. pages 1188-1196.
http://jmlr.org/proceedings/papers/v32/le14.html.

Andrew Kachites McCallum. 2002. MAL-
LET: A Machine Learning for Lan-
guage Toolkit. Http://mallet.cs.umass.edu.

http://mallet.cs.umass.edu.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. 2013. Distributed
Representations of Words and Phrases and their
Compositionality. In Advances in Neural In-
formation Processing Systems 26: 27th Annual
Conference on Neural Information Processing Sys-
tems 2013. Proceedings of a meeting held December
5-8, 2013, Lake Tahoe, Nevada, United States..
pages 3111-3119. http://papers.nips.cc/paper/5021-
distributed-representations-of-words-and-phrases-
and-their-compositionality.

Preslav Nakov, Doris Hoogeveen, Lluis Marquez,
Alessandro Moschitti, Hamdy Mubarak, Timothy
Baldwin, and Karin Verspoor. 2017. SemEval-2017
Task 3: Community Question Answering. In Pro-
ceedings of the 11th International Workshop on Se-
mantic Evaluation. Association for Computational
Linguistics, Vancouver, Canada, SemEval *17.

Massimo Nicosia, Simone Filice, Alberto Barrén-
Cedeno, Iman Saleh, Hamdy Mubarak, Wei Gao,
Preslav Nakov, Giovanni Da San Martino, Alessan-
dro Moschitti, Kareem Darwish, et al. 2015.
QCRI: Answer selection for community question
answering-experiments for Arabic and English. In
Proceedings of the 9th International Workshop on
Semantic Evaluation, SemEval. volume 15, pages
203-209.

Stuart Rose, Dave Engel, Nick Cramer, and Wendy
Cowley. 2010. Automatic keyword extraction from
individual documents. In Michael W. Berry and Ja-
cob Kogan, editors, Text Mining. Applications and
Theory, John Wiley and Sons, Ltd, pages 1-20.
https://doi.org/10.1002/9780470689646.ch1.

Guoshun Wu and Man Lan. 2016. ECNU at
SemEval-2016 Task 3: Exploring Traditional
Method and Deep Learning Method for Ques-
tion Retrieval and Answer Ranking in Commu-
nity Question Answering. In Proceedings of the
10th International Workshop on Semantic Evalu-
ation (SemEval-2016). Association for Computa-
tional Linguistics, San Diego, California, pages
872-878. http://www.aclweb.org/anthology/S16-
1135.

