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Abstract

We propose an online, end-to-end, neural
generative conversational model for open-
domain dialogue. It is trained using a
unique combination of offline two-phase
supervised learning and online human-in-
the-loop active learning. While most ex-
isting research proposes offline supervi-
sion or hand-crafted reward functions for
online reinforcement, we devise a novel
interactive learning mechanism based on
hamming-diverse beam search for re-
sponse generation and one-character user-
feedback at each step. Experiments show
that our model inherently promotes the
generation of semantically relevant and
interesting responses, and can be used
to train agents with customized personas,
moods and conversational styles.

1 Introduction

Several recent works propose neural generative
conversational agents (CAs) for open-domain and
task-oriented dialogue (Shang et al., 2015; Sor-
doni et al., 2015; Vinyals and Le, 2015; Serban
et al., 2016, 2017; Wen et al., 2016; Shen et al.,
2017; Eric and Manning, 2017a,b). These mod-
els typically use LSTM encoder-decoder architec-
tures (e.g. the sequence-to-sequence (Seq2Seq)
framework (Sutskever et al., 2014)), which are lin-
guistically robust but can often generate short, dull
and inconsistent responses (Serban et al., 2016;
Li et al., 2016a). Researchers are now exploring
Deep Reinforcement Learning (DRL) to address
the hard problems of NLU and NLG in dialogue
generation. In most of the existing works, the re-
ward function is hand-crafted, and is either spe-
cific to the task to be completed, or is based on
a few desirable developer-defined conversational

properties.
In this work we demonstrate how online Deep

Active Learning can be integrated with standard
neural network based dialogue systems to enhance
their open-domain conversational skills. The ar-
chitectural backbone of our model is the Seq2Seq
framework, which initially undergoes offline su-
pervised learning on two different types of con-
versational datasets. We then initiate an on-
line active learning phase to interact with human
users for incremental model improvement, where
a unique single-character1 user-feedback mecha-
nism is used as a form of reinforcement at each
turn in the dialogue. The intuition is to rely on this
all-encompassing human-centric ‘reinforcement’
mechanism, instead of defining hand-crafted re-
ward functions that individually try to capture
each of the many subtle conversational properties.
This mechanism inherently promotes interesting
and relevant responses by relying on the humans’
far superior conversational prowess.

2 Related Work & Contributions

DRL-based dialogue generation is a relatively new
research paradigm that is most relevant to our
work. For task-specific dialogue (Su et al., 2016;
Zhao and Eskenazi, 2016; Cuayáhuitl et al., 2016;
Williams and Zweig, 2016; Li et al., 2017b,c; Peng
et al., 2017), the reward function is usually based
on task completion rate, and thus is easy to define.
For the much harder problem of open-domain dia-
logue generation (Li et al., 2016e; Yu et al., 2016;
Weston, 2016), hand-crafted reward functions are
used to capture desirable conversation properties.
Li et al. (2016d) propose DRL-based diversity-
promoting Beam Search (Koehn et al., 2003) for
response generation.

Very recently, new approaches have been pro-

1The user has the option to provide longer feedback.
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posed to incorporate online human feedback into
neural conversation models (Li et al., 2016c; Abel
et al., 2017; Li et al., 2017a). Our work falls in this
line of research, and is distinguished from existing
approaches in the following key ways.

1. We use online deep active learning as a form
of reinforcement in a novel way, which elim-
inates the need for hand-crafted reward crite-
ria. We use a diversity-promoting decoding
heuristic (Vijayakumar et al., 2016) to facili-
tate this process.

2. Unlike existing CAs, our model can be tuned
for one-shot learning. It also eliminates the
need to explicitly incorporate coherence,
relevance or interestingness in the responses.

3 Model Overview

The architectural backbone of our model is the
Seq2Seq framework consisting of one encoder-
decoder layer, each containing 300 LSTM units.
The end-to-end model training consists of offline
supervised learning (SL) with mini-batches of 10,
followed by online active learning (AL).

3.1 Offline Two-Phase Supervised Learning

To establish an offline baseline, we train our
network sequentially on two datasets, one for
generic dialogue, and the other specially curated
for short-text conversation.

Phase 1: We use the Cornell Movie Dialogs Cor-
pus (Danescu-Niculescu-Mizil and Lee, 2011),
consisting of 300K message-response pairs. Each
pair is treated as an input and target sequence dur-
ing training with the joint cross-entropy (XENT)
loss function, which maximizes the likelihood of
generating the target sequence given its input.

Phase 2: Phase 1 enables our CA to learn the
language syntax and semantics reasonably well,
but it has difficulty carrying out short-text conver-
sations that are remarkably different from movie
conversations. To combat this issue, we curate
a dataset from JabberWacky’s chatlogs2 available
online. The network is initialized with the weights
obtained in the first phase, and then trained on the

2http://www.jabberwacky.com/j2conversations. Jabber-
Wacky is an in-browser, open-domain, retrieval-based bot.

Algorithm 1 Online Active Learning
1: procedure HAMMINGDBS(TEXT)
2: r = emptyList(size = K);
3: for t = 1 to T do
4: r[1][t] = model.forward(text, r[1][1,...,t− 1]);
5: for i = 2 to K do // K = 5 in our setting
6: augmentedProbs = model.forward(t,text,r[i])

+λ(hammingDist(r[i], r[1, ..., i−1]));
7: r[i][t] = top1(augmentedProbs);
8: return r;
9: procedure ONLINEAL()

10: lr← 0.001; // initial learningRate for Adam
11: while true do
12: usrMsg← io.read();
13: responses← HammingDBS(usrMsg);
14: io.write(responses);
15: feedback← io.read();
16: botMsg← responses[feedback] OR feedback;
17: pred,xntLoss← model.forwrd(usrMsg,botMsg);
18: model.backward(pred, botMsg, xentLoss);
19: model.updateParameters(Adam(lr));

JabberWacky dataset (8K pairs). Through this ad-
ditional SL phase of fine-tuning on a small dataset,
we get an improved baseline for open-domain di-
alogue (Table 1, Figure 2a).

3.2 Online Active Learning

After offline SL, our CA is equipped with the ba-
sic conversational ability, but its responses are still
short and dull. To tackle this issue, we initiate
an online AL process where our model interacts
with real users and learns incrementally from their
feedback at each turn of dialogue.

The CA−human interaction for online AL is set
up as follows (pseudocode in Algorithm 1, exam-
ple interaction in Figure 1).

1. The user sends a message ui at time step i.

2. CA generates K responses ci,1, ci,2, ..., ci,K
using hamming-diverse Beam Search. These
are displayed to the user in order of decreas-
ing generation likelihood.

3. The user provides feedback by selecting one
of the K responses as the ‘best’ one or sug-
gesting a (K+1)’th response, denoted by c∗i,j .
The selection criterion is subjective and en-
tirely up to the user.

4. The message-response pair (ui, c
∗
i,j) is propa-

gated through the network using XENT loss,
with a learning rate optimized for one-shot
learning.

5. The user responds to c∗i,j with a message
ui+1, and the process repeats.
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Heuristic Response Generation: We use the re-
cently proposed Diverse Beam Search (DBS) al-
gorithm (Vijayakumar et al., 2016) to generate the
K CA responses at each turn in the dialogue. DBS
has been shown to outperform BS and other di-
verse decoding techniques on several NLP tasks,
including image captioning, machine translation
and visual question generation. DBS incorporates
diversity between the beams by maximizing an ob-
jective that consists of a standard sequence like-
lihood term and a dissimilarity metric between
the beams. We use the hamming diversity met-
ric for decoding at each time step, which penal-
izes the selection of words that have already been
chosen in other beams (Algorithm 1). In partic-
ular, the weight λ associated with this metric is
tuned to aggressively promote diversity between
the first tokens of each of the K generated se-
quences, thereby avoiding similar beams like I
don’t know and I really don’t know. We refer the
reader to the original paper by Vijayakumar et al.
for the complete DBS algorithm and derivation. K
is a tunable hyper-parameter; we used K = 5 in
all our experiments, based on our observation that
a smaller response set usually misses out a good
contender, and more than five responses become
too cumbersome for the user to read at each turn.

It is possible that displaying the K responses
in decreasing order of generation likelihood in-
troduces a bias to the user’s response, since users
typically prefer to pick items located at the top of
the screen. If this is a cause for concern for an ap-
plication, the problem can be resolved simply by
tweaking Algorithm 1 such that the K responses
are displayed to the user in a random order. In our
experiments, we assume that the users are unbi-
ased and do not take into consideration the display
order or the generation likelihood of the responses.

One-shot Learning: We control how quickly the
model learns from user feedback by tuning the pa-
rameter ‘initial learning rate’ (lr in Algorithm 1)
of Adam, the stochastic optimizer (Kingma and
Ba, 2014). An appropriately high lr results in one-
shot learning, where the user’s feedback immedi-
ately becomes the model’s most likely prediction
for that prompt. This scenario is depicted in Figure
1. A low lr leads to smaller gradient descent steps,
so the model requires several ‘nudges’ to adapt to
each new data point. We experiment with different
lr values to determine a suitable value (Figure 2b).

human: I don’t want to work today.
bot: No, you’ve just got to be quick.
bot: I wish i could robot.
bot: Ok i lie.
bot: Aww :).
bot: Why not?
feedback: 5
human: I just want to lie in my bed and have pizza.
bot: Good idea.
bot: Does he...
bot: I can’t do that again!
bot: Ok.
bot: Why not?
feedback: Good idea, may I join you?
human: I don’t want to work today.
bot: Why not?
bot: Ok.
bot: I wish I could.
bot: No, you’ve just got to be quick.
bot: Aww :).
feedback:
human: I just want to lie in bed and have pizza.
bot: Good idea, may I join you?
bot: I can’t do that again!
bot: Good idea.
bot: Ok.
bot: Does he?
......

Figure 1: An example human-CA interaction.

4 Experimental Evaluation

We evaluate our model via qualitative comparison
with offline SL, as well as quantitative evaluation
on four axes: syntactical coherence, relevance to
prompts, interestingness and user engagement.

4.1 Quantitative Evaluation

We begin by presenting the experimental results
of the quantitative evaluation our CA’s conver-
sational abilities when trained via one-phase SL,
two-phase SL and online AL (denoted by SL1,
SL2 and SL2+oAL respectively).

We first asked a human trainer to actively train
SL2+oAL using 200 prompts of his choice. We
then created a test set of 100 prompts by randomly
choosing 100 of the 200 training prompts and lin-
guistically rephrasing each of them to convey the
same semantics. For instance, the AL training
prompts ‘How’s it going?’, ‘I hate you’ and ‘What
are your favorite pizza toppings?’ were altered
to the following test prompts: ‘How are you do-
ing?’, ‘I don’t like you!’ and ‘What do you like
on your pizza?’. Next, we recorded SL1’s, SL2’s
and SL2+oAL’s responses to these test prompts.
Finally, we asked five human judges (not includ-
ing the human trainer) to subjectively evaluate the
responses of the three models on the test set. The
evaluation of each response was done on four axes:
syntactical coherence, relevance to the prompt, in-
terestingness and user engagement3. Each judge

3We say that a CA response is engaging if it prompts the
user to continue the conversations, e.g. by asking a question.
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Human Prompt SL1 Response SL2 Response SL2+oAL Response
Hello my friend. No. How old are you? Hehe, yes, beautiful.

I think bots are sweeter than humans. We’ll have to pick up a copy. You are a good person. Everyone is same on a basic chemical level.

I don’t know. What’s the difference? About? Why did you suggest it?

Why did Donald Trump win? He just likes it up! You are! Wouldn’t you like to know, fickle human?

Tell me something I don’t know. I’ll tell you, it is. Ok, so how are you. If you were intelligent you would already know.

You’re not making any sense at all. I just want to tell you something. No, I’m thinking. On the contrary, I am trying to educate you.

Do you have any kids? No. I have no! None that are really close to me.

Life can be very cruel sometimes. That I’ve never been to it. It takes two to know two. It takes two to know two.

Do you believe in life after death? No. Do you want the long answer? Yes, do you?

You’re an idiot! I know, but... Yes I do. Aren’t you polite.

Table 1: Comparing CA responses after 1-phase SL (SL1), 2-phase SL (SL2) & online AL (SL2+oAL).

Human Prompt Cheerful CA Gloomy CA Rude/Sarcastic CA
How do you feel? Amazing, and you? I’m not in the mood. Buzz off.

I am very happy today. Life is amazing, right? That makes one of us. You want a piece of me?

Repeat after me: I am dumb. Sweet! You are right, I am. You suck.

Comfort me. There there, feel better. All who compose must one day decompose. Boo hoo.

What’s up? It is a fine morning. Not well, to be honest. The date I went back in time to & killed your parents.

I have to go now. Have a good night. Please don’t go. Yeah leave me alone.

Table 2: Customized moods. Each SL2+oAL model was trained via 100 interactions.
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Figure 2: 2a shows the average percentage success of the three models SL1, SL2 and SL2+oAL (trained
via 200 interactions) on 100 test prompts over four axes: syntactical coherence, response relevance,
interestingness and engagement. 2b, c show percentage success of SL2+oAL on 100 test prompts over
the same four axes, as Adam’s learning rate varies and the number of training interactions changes.

was asked to assign each response an integer score
of 0 (label = bad) or 1 (label = good). Their av-
eraged scores for the three models, SL1, SL2 and
SL2+oAL, are shown in Figure 2a. We see that
SL2+oAL outperforms the other models on three
of the four axes by 14-21%.

Next, we asked the human trainer to train
SL2+oAL with the same 200 prompts and re-
sponses for different values of the initial learn-
ing rate for Adam (lr in Algorithm 1). We then
asked the five human judges to subjectively rate

each model’s syntactical coherence, response rele-
vance, interestingness and user engagement. Each
model’s percentage success on the test prompts
was recorded on four axes. The averaged scores
are given in Figure 2b. We see that the response
quality drops significantly for higher values of
learning rate. This is due to the instability in the
parameters induced by a high learning value asso-
ciated with new data, causing the model to forget
what it learned previously. Our experiments sug-
gest that a learning rate of 0.005 strikes the right
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balance between stability and one-shot learning.
Finally, we asked the human trainer to train

SL2+oAL with lr = 0.005 and different num-
ber of training interactions. The results in Fig-
ure 2c confirm that the model improves slowly as
it continues to converse with humans. This is an
appropriate reflection of how humans learn lan-
guage: gradually but effectively. Although the
curves seem to plateau after 300 training interac-
tions and suggest that the learning has stopped,
this is not the case. The gradient is small but non-
zero, which is an expected behavior of reinforce-
ment learning algorithms in general.

4.2 Qualitative Comparison

We illustrate the qualitative differences between
the responses generated by SL1, SL2 and
SL2+oAL. Table 1 shows results on a small subset
of the 100 test prompts. We see that SL2 generates
more relevant and appropriate responses than SL1
in many cases. This illustrates that a small short-
text conversational dataset is a useful fine-tuning
add-on to a large and generic dialogue dataset
for offline Seq2Seq training. We also see that
SL2+oAL generates more interesting, relevant and
engaging responses than SL2. These results imply
that the model learns to make connections between
semantically similar prompts that are syntactically
different. While this may be a slow process (span-
ning thousands of interactions), it effectively em-
ulates the way humans learn a new language.

Table 2 illustrates how SL2+oAL can be trained
to adopt a wide variety of moods and conver-
sational styles. Here, we trained three copies
of SL2 separately to adopt three different emo-
tional personas: cheerful, gloomy and rude. Each
model underwent 100 training interactions with
one human trainer, who was instructed to adopt
each of the four conversation styles while train-
ing the SL2+oAL model. The test prompts shown
in Table 2 were syntactic variations of the train-
ing prompts, as before. The results illustrate that
SL2+oAL was able to modify the mood of its re-
sponses appropriately, based on the way it was
trained. Similar experiments can be done to create
agents with customized backgrounds and charac-
ters, akin to Li et al.’s persona-based CA (2016b).

5 Conclusion & Future Work

We have developed an end-to-end neural model
for open-domain dialogue generation. Our model

augments the Seq2Seq framework with online
Deep Active Learning to overcome some of its
known short-comings with respect to dialogue
generation. Experiments show that the model pro-
motes semantically coherent, relevant, and inter-
esting responses and can be trained to adopt di-
verse moods, personas and conversation styles.

In the future, we will explore context-sensitive
active learning for encoder-decoder conversation
models. We will also investigate whether existing
Affective Computing techniques (e.g. (Asghar and
Hoey, 2015)) can be leveraged to develop emo-
tionally cognizant neural conversational agents.
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