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Abstract

Distributed representations of sentences
have been developed recently to represent
their meaning as real-valued vectors. How-
ever, it is not clear how much information
such representations retain about the po-
larity of sentences. To study this question,
we decode sentiment from unsupervised
sentence representations learned with dif-
ferent architectures (sensitive to the order
of words, the order of sentences, or none)
in 9 typologically diverse languages. Senti-
ment results from the (recursive) composi-
tion of lexical items and grammatical strate-
gies such as negation and concession. The
results are manifold: we show that there
is no ‘one-size-fits-all’ representation ar-
chitecture outperforming the others across
the board. Rather, the top-ranking archi-
tectures depend on the language and data
at hand. Moreover, we find that in several
cases the additive composition model based
on skip-gram word vectors may surpass su-
pervised state-of-art architectures such as
bidirectional LSTMs. Finally, we provide a
possible explanation of the observed varia-
tion based on the type of negative construc-
tions in each language.

1 Introduction

Distributed representations of sentences are usu-
ally acquired in an unsupervised fashion from raw
texts. Those inferred from different algorithms are
prone to grasp parts of their meaning and disregard
others. Representations have been evaluated thor-
oughly, both intrinsically (interpretation through
distance measures) and extrinsically (performance
on downstream tasks). Moreover, several methods
have been considered, based on both the compo-

sition of word embeddings (Milajevs et al., 2014;
Marelli et al., 2014; Sultan et al., 2015) and direct
generation (Hill et al., 2016). The evaluation was
focused solely on English, and it rarely concerned
other languages (Adi et al., 2017; Conneau et al.,
2017). As a consequence, many ‘core’ methods
to learn distributed sentence representations are
largely under-explored in a variety of typologically
diverse languages, and still lack a demonstration of
their usefulness in actual downstream tasks.

In this work, we study how well distributed sen-
tence representations capture the polarity of a sen-
tence. To this end, we choose the Sentiment Anal-
ysis task as an extrinsic evaluation protocol: it di-
rectly detects the polarity of a text, where polarity
is defined as the attitude of the speaker with respect
to the whole content of the string or one of the enti-
ties mentioned therein. This attitude is measured
quantitatively on a scale spanning from negative
to positive with arbitrary granularity. As such, po-
larity consists in a crucial part of the meaning of a
sentence, which should not be lost.

The polarity of a sentence depends heavily on a
complex interaction between lexical items endowed
with an intrinsic polarity, and morphosyntactic con-
structions altering polarity, most notably negation
and concession. The interaction is deemed to be
recursive, hence some approaches take into account
word order and phrase boundaries in order to apply
the correct composition (Socher et al., 2013). How-
ever, some languages lack continuous constituents:
contiguous spans of words do not correspond to
syntactic subtrees, making composition unreliable
(Ponti, 2016). Moreover, the expression of negation
varies across languages, as demonstrated by works
in Linguistic Typology (Dahl, 1979, inter alia). In
particular, negation can appear as a bounded mor-
pheme or a free morpheme; it can precede or follow
the verb; it can ‘agree’ or not in polarity with indef-
inite pronouns; it can alter the expression of verbal
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categories (e.g. tense, aspect, or modality).
We explore a series of methods endowed with

different features: some hinge upon word order,
others on sentence order, others on neither. We
evaluate these unsupervised representations using
a Multi-Layer Perceptron which uses the gener-
ated sentence representations as input and predicts
sentiment classes (positive vs. negative) as output.
Training and evaluation are based on a collection
of annotated databases. Owing to the variety of
methods and languages, we expect to observe a
variation in the performance correlated with the
properties of both.

Moreover, we establish a ceiling to the possible
performances of our method based on decoding
unsupervised distributed representations. In fact,
we offer a comparison between this and supervised
deep learning architectures that achieve state-of-art
scores in the Sentiment Analysis task. In particular,
we also evaluate a bi-directional LSTM (Li et al.,
2015) on the same task. These models have ad-
vantage over distributed representations as: i) they
are specialised on a single task rather than built as
general-purpose representations; ii) their recurrent
nature allows to capture the sequential composition
of polarity in a sentence. However, since training
these models requires large amounts of annotated
data, resource scarcity in other languages hampers
their portability.

The aim of this work is to assess which algo-
rithm for distributed sentence representations is
the most appropriate for capturing polarity in a
given language. Moreover, we study how language-
specific properties have an impact on performance,
finding an explanation in Language Typology. We
also provide an in-depth analysis of the most rele-
vant features by visualising the activation of hidden
neurons. This will hopefully contribute to advanc-
ing the Sentiment Analysis task in the multilingual
scenarios. In § 2, we survey prior work on multi-
lingual sentiment analysis. Afterwards, we present
the tested algorithms for generating distributed rep-
resentations of sentences in § 3. In § 4, we sketch
the dataset and the experimental setup. Finally, §
5 examines the results in light of the sensitivity of
the algorithms and the typology of negation.

2 Multilingual Sentiment Analysis

The task of sentiment classification is mostly ad-
dressed through supervised approaches. However,
these achieve unsatisfactory results in resource-lean

languages because of the scarcity of resources to
train dedicated models (Denecke, 2008). This af-
flicts state-of-art deep learning architectures even
more compared to traditional machine learning al-
gorithms (Chen et al., 2016). As a consequence,
previous work resorted to i) language transfer or
ii) joint multilingual learning. The former adapts
models from a source resource-rich language to a
target resource-poor language; the latter infers a sin-
gle model portable across languages. Approaches
based on distributed representations induced in an
unsupervised fashion do not face the difficulty re-
sulting from resource scarcity: they are portable
to other tasks and languages. In this section we
survey deep learning techniques, adaptive models,
and unsupervised distributed representations for
sentiment classification in a multilingual scenario.
The last approach is the focus of this work.

Deep learning algorithms for sentiment classifi-
cation are designed to deal with compositionality.
Hence, they often rely on recurrent networks trac-
ing the sequential history of a sentence, or special
compositional devices. Recurrent models include
bi-directional LSTMs (Li et al., 2015), possibly
enriched with context (Mousa and Schuller, 2017).
On the other hand, Socher et al. (2013) put forth
a Recursive Neural Tensor Network, which com-
poses representations recursively through a single
tensor-based composition function. Subsequent
improvements of this line of research include the
Structural Attention Neural Networks (Kokkinos
and Potamianos, 2017), which adds structural in-
formation around each node of a syntactic tree.

When supervised monolingual models are not
feasible, language transfer can bridge between mul-
tiple languages, for instance through supervised la-
tent Dirichlet allocation (Boyd-Graber and Resnik,
2010). Direct transfer relies on word-aligned par-
allel texts where the source language text is either
manually or automatically annotated. The senti-
ment information is then projected onto the tar-
get text (Almeida et al., 2015), also leveraging
non-parallel data (Zhou et al., 2015). Chen et al.
(2016) devised a multi-task network where an ad-
versarial branch spurs the shared layers to learn
language-independent features. Finally, Lu et al.
(2011) learned from annotated examples in both
the source and target language. Alternatively, sen-
tences from other languages are translated into En-
glish and assigned a sentiment based on lexical
resources (Denecke, 2008) or supervised methods
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(Balahur and Turchi, 2014).
Finally, cross-lingual sentiment classification

can leverage on shared distributed representations.
Zhou et al. (2016) captured shared high-level fea-
tures across aligned sentences through autoen-
coders. In this latent space, distances were op-
timised to reflect differences in sentiment. On the
other hand, Fernández et al. (2015) exploited bilin-
gual word representations, where vector dimen-
sions mirror the distributional overlap with respect
to a pivot. Le and Mikolov (2014) concatenated
sentence representations obtained through variants
of Paragraph Vector and trained a Logistic Regres-
sion model on top of them.

Previous studies thus demonstrated that sen-
tence representations retain information about po-
larity, and that they partly alleviate the drawbacks
of deep architectures (single-purposed and data-
demanding). Hence, the Sentiment Analysis tasks
seems convenient to compare different sentence
representation architectures. Nonetheless, a sys-
tematic evaluation has never taken place for this
task, and a large-scale study over typologically di-
verse languages has not been attempted for any of
the algorithms reviewed. We intend to fill these
gaps, considering the methods to generate sentence
representations outlined in the next section.

3 Distributed Sentence Representations

Word vectors can be combined through various
compositional operations to obtain representations
of phrases and sentences. Mitchell and Lapata
(2010) explored two operations: addition and mul-
tiplication. Notwithstanding their simplicity, they
are hardly outperformed by more sophisticated op-
erations (Rimell et al., 2016). Some of these com-
positional representations based on matrix multipli-
cation were also evaluated on sentiment classifica-
tion (Yessenalina and Cardie, 2011). Alternatively,
sentence representations can be induced directly
with no intermediate step at the word level. In this
paper, we focus on sentence representations that are
generated in an unsupervised fashion. Furthermore,
they are ‘fixed’, that is, they are not fine-tuned for
any particular downstream task, since we are inter-
ested in their intrinsic content.1

1This excludes methods concerned with phrases, like the
ECO embeddings (Poliak et al., 2017), or requiring structured
knowledge, like CHARAGRAM (Wieting et al., 2016a).

3.1 Algorithms
We explore several methods to generate sentence
representations. One exploits a compositional op-
eration (addition) over word representations stem-
ming from a Skip-Gram model (§ 3.1.1). Others are
direct methods, including FastSent (§ 3.1.2), a Se-
quential Denoising AutoEncoder (SDAE, § 3.1.3)
and Paragraph Vector (§ 3.1.4). Note that FastSent
relies on sentence order, SDAE on word order, and
Paragraph Vector on neither. All these algorithms
were trained on cleaned-up Wikipedia dumps.

The choice of the algorithms was based on fol-
lowing criteria: i) their performance reported in
recent surveys (n.b., the surveys were limited to
English and evaluated on other tasks), most notably
Hill et al. (2016) and Milajevs et al. (2014); ii) the
variety of their modelling assumptions and features
encoded. The referenced surveys already hinted
that the usefulness of a representation is largely
dependent on the actual application. Shallower but
more interpretable representations can be decoded
with spatial distance metrics. Others, more deep
and convoluted architectures, outperform the others
in supervised tasks. We inquire whether the gen-
eralisation is tenable also in the task of Sentiment
Analysis targeting sentence polarity.

3.1.1 Additive Skip-Gram
As a bottom-up method, we train word embeddings
using skip-gram with negative sampling (Mikolov
et al., 2013). The algorithm finds the parameter θ
such that, given a pair of a word w and a context
c, the model discriminates correctly whether it be-
longs to a set of sentences S or a set of randomly
generated incorrect sentences S′:

∏
(w,c)∈S

p(S = 1|w, c, θ)
∏

(w,c)∈S′
p(S′ = 0|w, c, θ)

The representation of a sentence was obtained via
element-wise addition of the vectors of the words
belonging to it (Mitchell and Lapata, 2010).

3.1.2 FastSent
The FastSent model was proposed by Hill et al.
(2016). It hinges on a sentence-level distributional
hypothesis (Polajnar et al., 2015; Kiros et al., 2015).
In other terms, it assumes that the meaning of a sen-
tence can be inferred by the neighbour sentences
in a text. It is a simple additive log-linear model
conceived to mitigate the computational expensive-
ness of algorithms based on a similar assumption.
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Hence, it was preferred over SkipThought (Kiros
et al., 2015) because of i) these efficiency issues
and ii) its competitive performances reported by
Hill et al. (2016). In FastSent, sentences are repre-
sented as bags of words: a context of sentences is
used to predict the adjacent sentence. Each word
w corresponds to a source vector uw and a target
vector vw. A sentence Si is represented as the
sum of the source vectors of its words

∑
w∈Si

uw.
Hence, the cost C of a representation is given by
the softmax σ(x) of a sentence representation and
the target vectors of the words in its context c.

CSi =
∑

c∈Si−1∪Si+1

σ(
∑
w∈Si

uw, vc) (1)

This model does not rely on word order, but rather
on sentence order. It encodes new sentences by
summing over the source vectors of their words.

3.1.3 Sequential Denoising AutoEncoder
Sequential Denoising AutoEncoders (SDAEs) com-
bine features of Denoising AutoEncoders (DAE)
and Sequence-to-Sequence models. In DAE, the in-
put representation is corrupted by a noise function
and the algorithms learns to recover the original
(Vincent et al., 2008). Intuitively, this makes the
model more robust to changes in input that are
irrelevant for the task at hand. This architecture
was later adapted to encode and decode variable-
length inputs, and the corruption process was imple-
mented in the form of dropout (Iyyer et al., 2015).
In the implementation by Hill et al. (2016),2 the
corruption function is defined as f(S|po, px). S is
a list of words (a sentence) where each has a prob-
ability po to be deleted, and the order of the words
in every distinct bigram has a probability px to be
swapped. The architecture consists in a Recurrent
Layer and predicts p(S|f(S|po, px)).

3.1.4 Paragraph Vector
Paragraph Vector is a collection of log-linear mod-
els proposed by Le and Mikolov (2014) for para-
graph/sentence representation. It consists of two
different models, namely the Distributed Memory
model (DM) and the Distributed Bag Of Words
model (DBOW). In DM, the ID of every distinct
paragraph (or sentence) is mapped to a unique vec-
tor in a matrix D and each word is mapped to a
unique vector in matrix W. Given a sentence i and

2https://github.com/fh295/
SentenceRepresentation

a window size k, the vector Di,· is used in con-
junction with the concatenation of the vectors of
the words in a sampled context 〈wi1 , . . . , wik〉 to
predict the next word through logistic regression:

p(Wik+1
| 〈Di,Wi1 , . . . ,Wik〉) (2)

Note that the sentence ID vector is shared by the
contexts sampled from the same sentence. On the
other hand, DBOW focuses on predicting the word
embedding Wij for a sampled word j belonging
to sentence i given the sentence representation Di.
As a result, the main difference between the two
Paragraph Vector models is that the first is sensitive
to word order (represented by the word vector con-
catenation), whereas the second is insensitive with
respect to it. These models store a representation
for each sentence in the training set, hence they are
memory demanding. We use the gensim implemen-
tation of the two models available as Doc2Vec.3

3.2 Hyper-parameters
The choice of the models’ hyper-parameters was
based on two (contrasting) criteria: i) conservative-
ness with those proposed in the original models
and ii) comparability among the models in this
work. In particular, we ensured that each model
had the same sentence vector dimensionality: 300.
The only exception is SDAE: we kept the recom-
mended value of 2400. Paragraph Vector DBOW
and SkipGram were trained for 10 epochs, with a
window size of 10, a minimum frequency count of
5, and a sampling threshold of 10−5. FastSent was
set as having a minimum count of 3, and no sam-
pling. The probabilities in the corruption function
of the SDAE were set as po = 0.1 (deletion) and
px = 0.1 (swapping). The dimension of the RNN
(GRU) hidden states (and hence sentence vector)
was 2400, whereas single words were assigned 100
dimensions. The learning rate was set to 0.01 with-
out decay, and the training lasted 7.2 hours on a
NVIDIA Titan X GPU. The main properties of each
algorithm are summarised in Table 1.

Algorithm WO SO
Additive SkipGram
ParagraphVec DBOW
FastSent X
Sequential Denoising AutoEncoder X

Table 1: Sensitivity to Word or Sentence Order.

3https://radimrehurek.com/gensim/
models/doc2vec.html

25



0

25

50

75

100

Negative Positive
Polarity

P
er

ce
nt

ag
e

(a) Arabic

0

25

50

75

100

Negative Positive
Polarity

P
er

ce
nt

ag
e

(b) Chinese

0

25

50

75

100

Negative Positive
Polarity

P
er

ce
nt

ag
e

(c) Dutch

0

25

50

75

100

Negative Positive
Polarity

P
er

ce
nt

ag
e

(d) English

0

25

50

75

100

Negative Positive
Polarity

P
er

ce
nt

ag
e

(e) French

0

25

50

75

100

Negative Positive
Polarity

P
er

ce
nt

ag
e

(f) Italian

0

25

50

75

100

Negative Positive
Polarity

P
er

ce
nt

ag
e

(g) Russian

0

25

50

75

100

Negative Positive
Polarity

P
er

ce
nt

ag
e

(h) Spanish

Figure 1: Percentages of negative (left) and positive (right) sentences with the same amount of negative
grammatical markers. A count of 0 is represented in dark blue, 1 in light blue, and 2 or more in green.

4 Experimental Setup

Now, we evaluate the quality of the distributed sen-
tence representations from § 3 on Sentiment Anal-
ysis. In § 4.1 we introduce the datasets of all the
considered languages, and the evaluation protocol
in § 4.2. Finally, to provide a potential performance
ceiling, we compare the obtained results with those
of a deep, state-of-art classifier, outlined in § 4.3.

4.1 Datasets
The data for training and testing are sourced from
the SemEval 2016: Task 5 (Pontiki et al., 2016).
These datasets provide customer reviews in 8 lan-
guages labelled with Aspect-Based Sentiment, i.e.,
opinions about specific entities or attributes rather
than generic stances. The languages include Ara-
bic (hotels domain), Chinese (electronics), Dutch
(restaurants and electronics), English (restaurants

and electronics), French, Russian, Spanish, and
Turkish (restaurants all). We mapped the labels
to an overall polarity class (positive or negative)
by selecting the majority class among the aspect-
based sentiment classes for a given sentence. Note
that no general sentiment for the sentence was in-
cluded in this pool. Moreover, we added data for
Italian (tweets) from the SENTIPOLC shared task in
EVALITA 2016 (Barbieri et al., 2016). We discarded
neutral stances from the corpus, and retained only
positive and negative ones. Table 2 shows the fi-
nal size of the dataset partitions and the Wikipedia
dumps. In Figure 1, we report the percentage of
sentences with the same amount of negative gram-
matical markers (e.g. the word not and the suffix
n’t in English) based on their polarity class. We
discuss the impact of the variation of these percent-
ages on the results in § 5.
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Language Wikipedia
Dumps

Train Test

Arabic 3406732 4570 1163
Chinese 8067971 2593 1011
Dutch 11860559 2169 683
English 30000002 3584 1102
French 26024881 1410 534
Italian 15338617 4588 512
Russian 16671224 2555 835
Spanish 22328668 1553 646
Turkish 3622336 1008 121

Table 2: Size of the data partitions (# sentences).

4.2 Evaluation Protocol
After mapping each sentence in the dataset to its
distributed representation, we fed them to a Multi-
Layer Perceptron (MLP), trained to detect the sen-
tence polarity. In the MLP, a logistic regression
layer is stacked onto a 60-dimensional hidden layer
with a hyperbolic tangent activation. The weights
were initialised from the random xavier distribution
Glorot and Bengio (2010). The cross-entropy loss
was normalised with the L2-norm of the weights
scaled by λ = 10−3. The optimisation with gradi-
ent descent ran for 20 epochs with early stopping.
Batch size was 10 and the learning rate 10−2.

4.3 Comparison with State-of-Art Models
In addition to unsupervised distributed sentence
representations, we test a bi-directional Long Short-
Term Memory neural network (bi-LSTM) on the
same task. This is a benchmark to compare against
results of deep state-of-art architectures. The
choice is based on the competitive results of this
algorithm and on its sensitivity to word order. The
accuracy of this architecture is 45.7 for 5-class and
85.4 for 2-class Sentiment Analysis on the standard
dataset of the Stanford Sentiment Treebank.

The importance of word order is evident from the
architecture of the network. In a recurrent model,
the word embedding of a word wt at time t is com-
bined with the hidden state ht−1 from the previous
time step. The process is iterated throughout the
whole sequence of words of a sentence. This model
can be extended to multiple layers. LSTM is a re-
finement associating each time epoch with an input,
control and memory gate, in order to filter out ir-
relevant information (Hochreiter and Schmidhuber,
1997). This model is bi-directional if it is split in
two branches reading simultaneously the sentence
in opposite directions (Schuster and Paliwal, 1997).

Contrary to the evaluation protocol sketched in §
4.2, the bi-LSTM does not utilise unsupervised sen-
tence representations. Rather, it is trained directly
on the datasets from § 4.1. The optimisation ran for
20 epochs, with a batch size of 20 and a learning
rate of 5 · 10−2. The 60-dimensional hidden layer
had a dropout probability of 0.2. Crucially, the
word embeddings were initialised with the Skip-
Gram model described in § 3.1.1. Since perfor-
mance tends to vary depending on the initialisation,
this ensures a fair comparison.

5 Results

The results are displayed in Figure 2. Weighted F1
scores were preferred over accuracy scores, since
the two classes (positive and negative) are unbal-
anced. We decoded the unsupervised representa-
tions multiple times through different initialisation
of the MLP weights, hence we report both the mean
value and its standard deviation. The results are
not straightforward: there is no algorithm outper-
forming the others in each language; unexpectedly
not even the bi-LSTM used as a ceiling. However,
the variation in performance follows certain trends,
depending on the properties of languages and algo-
rithms. We now examine: i) how performance is
affected by the properties of the algorithms, such
as those summarised in Table 1; ii) how typological
features concerning negation and the text domain
could make polarity harder to detect; iii) the inter-
action between negation and indefinite pronouns,
by visualising the contribution of each word to the
predicted class probabilities.

5.1 Feature Sensitivity of the Algorithms
The state-of-art bi-LSTM algorithm chosen as a
ceiling is not the best choice in some languages
(Italian, and Turkish). In these cases, it is always
surpassed by the same model: additive Skip-Gram.
The drop in Italian is possibly linked to its dataset
in specific, since all the algorithms behave simi-
larly badly. Turkish is possibly challenging for a
recursive model because of the sparsity of its vo-
cabulary. These cases, however, are not isolated:
averaged word embeddings outperformed LSTMs
in text similarity tasks (Arora et al., 2016) and pro-
vide a strong baseline in English (Adi et al., 2017).

In any case, the general high performance of
additive Skip-Gram is noteworthy: it shows that
a simple method achieves close-to-best results in
almost every language among decoded distributed
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Algorithms: ● ● ● ● ●add−SkipGram bi−LSTM DBOW FastSent SDAE

add-SkipGram DBOW FastSent SDAE bi-LSTM
ar 51.76 ± 1.78 76.76 ± 4.42 53.85 ± 2.50 72.13 ± 5.44 86.56
en 76.31 ± 4.96 68.89 ± 1.49 73.57 ± 0.71 65.33 ± 4.39 78.65
es 80.19 ± 4.96 65.65 ± 3.17 74.50 ± 6.07 74.03 ± 0.81 85.08
fr 74.00 ± 0.43 65.07 ± 8.23 65.52 ± 1.82 53.80 ± 8.63 78.80
it 67.63 ± 5.52 65.24 ± 3.20 66.63 ± 1.63 57.62 ± 8.92 65.88
nl 79.04 ± 1.05 56.04 ± 0.00 76.06 ± 1.20 70.06 ± 3.65 82.66
ru 66.61 ± 0.89 63.42 ± 1.43 64.05 ± 0.74 69.96 ± 2.07 80.39
tr 73.22 ± 0.84 58.74 ± 0.00 65.19 ± 1.66 63.10 ± 2.69 68.49
zh 56.17 ± 2.93 52.58 ± 2.80 52.46 ± 1.95 66.26 ± 3.61 78.55

Figure 2: Results of 5 different algorithms on 9 languages. Values report the mean Weighted F1 Score and
the standard deviation. The best results per language are given in bold and the second-best is underlined.
Data points where the ceiling is outperformed are in italics.

representations. This result is in line with other
findings: Wieting et al. (2016b) showed that word
embeddings, once retrained and decoded by lin-
ear regression, beat many methods that generate
sentence representations directly.

Moreover, the second-best method for languages
is always FastSent, which is the only one hing-
ing upon neighbouring sentences as features. This
demonstrate that sentiment is encoded not only
within a sentence, but also in its textual context.
As a consequence, a relatively small and accessi-
ble dataset (Wikipedia) is sufficient to provide a
reliable model in most languages. Nonetheless, the
varying size of the dumps affects FastSent as well
as the other unsupervised algorithms: limited data
hinders them from learning faithful representations,

as in Arabic, Chinese, and Turkish (see Table 2).
In general, algorithms sensitive to the same fea-

tures behave similarly, e.g. SDAE and bi-LSTM.
They follow the same trend in relative improve-
ments from one language to another. The generally
low performance of SDAE could depend on the lim-
ited training time, which was necessary to evaluate
the algorithm on the whole set of languages.

5.2 Typology of Negation and Domain
In some languages, the scores are very scattered:
this fluctuation might be due to their peculiar mor-
phological properties. In particular, Arabic is an in-
troflexive language, Chinese is a radically isolating
language, and Turkish an agglutinative language.
On the other hand, the algorithms achieve better
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Figure 3: Visualization of the derivative of the class scores with respect to the word embeddings.

scores in the fusional languages, save Italian.
A fine-grained analysis shows also that the per-

formance is affected by the typology of the nega-
tion in each language, although negative mark-
ers appear in a reduced number of examples (see
Figure 1). Semantically, negation is crucial in
switching or mitigating the polarity of lexical items
and phrases. Morpho-syntactically, negation is ex-
pressed through several constructions across the
languages of the world. Constructions differ in
many respects, which are classified as feature-value
pairs in databases like the World Atlas of Language
Structures (Dryer and Haspelmath, 2013).4

Negation can affect the declarative verbal main
clauses. In fact, negative clauses can be: i) sym-
metric, i.e., identical to the affirmative counterpart
except for the negative marker; ii) asymmetric,
i.e. showing structural differences between neg-
ative and affirmative clauses (in constructions or
paradigms); iii) showing mixed behaviour. Alter-
ations concern for instance finiteness, the oblig-
atory marking of unreality status, or the expres-
sion of verbal categories. Secondly, negation inter-
acts with indefinite pronoun (e.g. nobody, nowhere,
never). Negative indefinites can i) co-occur with
standard negation; ii) be forbidden in concurrence;

4The features considered here for negation are 113A ‘Sym-
metric and Asymmetric Standard Negation’, 114A ‘Subtypes
of Asymmetric Standard Negation’, 115A ‘Negative Indefi-
nite Pronouns and Predicate Negation’, and 143A ‘Order of
Negative Morpheme and Verb’.

iii) display a mixed behaviour. Finally, the rela-
tion of the negative marker with respect to verb
is prone to change. Firstly, it can be either an af-
fix or a prosodically independent word. Secondly,
its position can be anchored to the verb (preced-
ing, following, or both). Thirdly, negation can be
omitted, doubled or even tripled.

Performances seem to suffer the ambiguity in
mapping between a negative marker and negative
meaning. In fact, the bi-LSTM achieves lower
scores in languages with asymmetric constructions
(Chinese, English, and Turkish): the additional
changes in the sentence construction and/or verb
paradigm might create noise. Additional reasons
of difficulty may occur when negation is doubled
(French) or affixed (Turkish), since this makes nega-
tion redundant or sparse. On the other hand, add-
SkipGram appears to be sensitive to the presence
of negation: according to the counts in Figure 1,
when this is too pervasive (Arabic and Russian) or
rare (Chinese), the scores tend to decrease.

These comments on the results based on linguis-
tic properties can also suggest speculative solutions
for future work. For algorithms based on sentence
order, it is not clear whether the problem lies in the
lack of wider collections of texts in some languages,
or rather on the maximum amount of information
about polarity that is learnt through a sentence-level
distributional hypothesis. On the other hand, im-
pairments of the other algorithms seem to be linked
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with redundancies and noise. Filtering out words
that contribute to this effect might benefit the qual-
ity of the representation. Moreover, the sparsity
due to cases where negation is an affix might be
mitigated by introducing character-level features.

The other inherent source of variation is the text
domain, on which the difficulty of the task depends
(Glorot et al., 2011). Although the unstructured
nature of tweets could hinder the quality of the
sentence representations in Italian, however, no
clear effect is evident based on the other domains.

5.3 Visualisation
Since languages vary in the “polarity agreement”
between verbs and indefinite pronouns, algorithms
may weigh these as features differently. We analyse
their role through a visualizasion of the activation
in the hidden layer of the bi-LSTM. In particular,
we approximated the objective function through
a linear function, and estimated the contribution
of each word to the true class probability by com-
puting the prime derivative of the output scores
with respect to the embeddings. This technique is
presented and detailed by Li et al. (2015). The visu-
alised hidden layers are shown in Figure 3, whereas
the sentences used as input are glossed in Ex. (3)
(Arabic), Ex. (4) (Spanish), and Ex. 5 (Russian).

(3) ‘ana
1SG

‘uhibu
like.NPST.1SG

kl
every

shay‘
thing

fi
in

hadha
this

almataeim
restaurant

/
/

‘ana
1SG

la
not.NPST

‘uhibu
like.NPST.1SG

‘ayu
any

shay‘
thing

fi
in

hadha
this

almataeam
restaurant

(4) me
1SG.DAT

gust-a
like-3SG

todo
everything

en
in

est-e
this-SG

restaurant-e
restaurant-SG

/
/

no
not

me
1SG.DAT

gust-a
like-3SG

nada
nothing

en
in

est-e
this-SG

restaurant-e
restaurant-SG

(5) mne
1SG.DAT

nráv-itsja
like.IMPV-PRS.3SG

vs-jo
all-NOM.SG

v
in

ét-om
this-PREP.SG

restoráne
restaurant-PREP.SG

/
/

mne
1SG.DAT

ni-čevó
nothing-GEN

ne
not

nráv-itsja
like.IMPV-PRS.3SG

v
in

ét-om
this-PREP.SG

restorán-e
restaurant-PREP.SG

The two compared sentences correspond to the
translation of two English sentences. The first
is positive: ‘I like everything in this restaurant’;
the second is negative: ‘I don’t like anything in

this restaurant’. These include a domain-specific
but sentiment-neutral word that plays the role of
a touchstone. The more a cell tends to blue, the
higher its activation. In some languages (e.g. Ara-
bic), the sentiment verb elicits a stronger reaction
in the positive polarity, whereas the indefinite pro-
noun dominates in the negative polarity. In several
other languages (e.g. Spanish), indefinite pronouns
are more relevant than any other feature. In Rus-
sian, only sentiment verbs always provoke a re-
action. These differences might be related to the
“polarity agreement” of these languages, which hap-
pens always, sometimes, and never, respectively.
In some other languages, however, no evidence is
found of any similar activation pattern.

6 Conclusion

In this work, we examined how much sentiment
polarity information is retained by distributed rep-
resentations of sentences in multiple typologically
diverse languages. We generated the representa-
tions through various algorithms, sensitive to dif-
ferent properties from training corpora (e.g, word
or sentence order). We decoded them through a
simple MLP and compared their performance with
one of the state-of-art algorithms for Sentiment
Analysis: bi-directional LSTM. Unexpectedly, for
some languages the bi-directional LSTM is outper-
formed by unsupervised strategies like the addi-
tion of the word embeddings obtained from a Skip-
Gram model. This model, in turn, surpasses more
sophisticated algorithms for most of the languages.
This demonstrates i) that no algorithm is the best
across the board; and ii) that some simple mod-
els are to be preferred even for downstream tasks,
which partially contrasts with the conclusions of
Hill et al. (2016). Moreover, representation algo-
rithms sensitive to word order have similar trends,
but they do not always achieve performance su-
perior to algorithms based on the sentence order.
Finally, some properties of languages (i.e. their
type of negation) appear to have an impact on the
scores: in particular, the asymmetry of negative
and affirmative clauses and the doubling of nega-
tive markers.
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