
Proceedings of the Fifth Joint Conference on Lexical and Computational Semantics (*SEM 2016), pages 219–228,
Berlin, Germany, August 11-12, 2016.

Learning Embeddings to lexicalise RDF Properties

Laura Perez-Beltrachini and Claire Gardent
CNRS, LORIA, UMR 7503

Vandoeuvre-lès-Nancy
F-54500, France

{laura.perez, claire.gardent}@loria.fr

Abstract

A difficult task when generating text from
knowledge bases (KB) consists in finding
appropriate lexicalisations for KB sym-
bols. We present an approach for lexicalis-
ing knowledge base relations and apply it
to DBPedia data. Our model learns low-
dimensional embeddings of words and
RDF resources and uses these represen-
tations to score RDF properties against
candidate lexicalisations. Training our
model using (i) pairs of RDF triples and
automatically generated verbalisations of
these triples and (ii) pairs of paraphrases
extracted from various resources, yields
competitive results on DBPedia data.

1 Introduction

In recent years, work on the Semantic Web has led
to the publication of large scale datasets in the so-
called Linked Data framework such as for instance
DBPedia or Yago. However, as shown in (Rec-
tor et al., 2004), the basic standards (e.g., RDF,
OWL) established by the Semantic Web commu-
nity for representing data and ontologies are diffi-
cult for human beings to use and understand. With
the development of the semantic web and the rapid
increase of Linked Data, there is consequently a
growing need in the semantic web community for
technologies that give humans easy access to the
machine-oriented Web of data.

Because it maps data to text, Natural Language
Generation (NLG) provides a natural means for
presenting this data in an organized, coherent and
accessible way. It can be used to display the
content of linked data or of knowledge bases to
lay users; to generate explanations, descriptions
and summaries from DBPedia or from knowledge
bases; to guide the user in formulating knowledge

base queries; and to provide ways for cultural her-
itage institutions such as museums and libraries to
present information about their holdings in multi-
ple textual forms.

In this paper, we focus on an important sub-
task of generation from RDF data namely lexical-
isation of RDF properties. Given a property, our
goal is to map this property to a set of possible
lexicalisations. For instance, given the property
HASWONPRIZE, our goal is to automatically in-
fer lexicalisations such as was honored with and
received.

Our approach is based on learning low-
dimensional vector embeddings of words and of
KB triples so that representations of triples and
their corresponding lexicalisations end up being
similar in the embedding space. Using these em-
beddings, we can then assess the similarity be-
tween a property and a set of candidate lexicali-
sations by simply applying the dot product to their
vector embeddings.

One difficulty when lexicalising RDF proper-
ties is that, while in some cases, there is a direct
and simple relation between the name of a prop-
erty and its verbalisation (e.g., BIRTHDATE / “was
born on”), in other cases, the relation is either in-
direct (e.g., ROUTEEND / “finishes at”) or opaque
(e.g., CREW1UP / “is the commander of”).

To account for these two possibilities, we there-
fore explore two main ways of creating candi-
date lexicalisations based on either lexical- or
on extensional-relatedness. Given some input
property p, lexically-related candidate lexicalisa-
tions for p are phrases containing synonyms or
derivationally related words of the tokens mak-
ing up the name of the input property. In con-
trast, extensionally-related candidate lexicalisa-
tions are phrases containing named entities which
are in its extension. For instance, given the
property CREW1UP, if the pair of entities (STS-

219



130, GEORGE D. ZAMK) is in its extension (i.e.,
there exists an RDF triple of the form 〈 STS-
130, CREW1UP, GEORGE D. ZAMK 〉), all sen-
tences mentioning STS-130, GEORGE D. ZAMK

or both will be retrieved and exploited to build
the set of candidate lexicalisations for CREW1UP.
Figure 1 shows some example L- and E-candidate
lexicalisations phrases.

In summary, the key contribution made in this
paper is a novel method for lexicalising RDF prop-
erties which differs from previous work in two
ways. First, while lexical and extensional relat-
edness have been used before for lexicalising RDF
properties (Walter et al., 2013), ours is the first lex-
icalisation approach which jointly considers both
sources of information. Second, while previous
approaches have used discrete representations and
similarity metrics based on Wordnet, our method
exploits continuous representations of both words
and KB symbols that are learned and optimised for
the lexicalisation task.

2 Related Work

We situate our work with respect to previous work
on ontology lexicons but also to research on rela-
tion extraction (extracting verbalisations of knowl-
edge base relations) and to embeddings-based ap-
proaches.

Ontology Lexicons (Trevisan, 2010) proposes a
simple lexicalisation approach which exploits the
tokens included in a property name to build can-
didate lexicalisations. In brief, this approach con-
sists in tokenizing and part-of-speech tagging rela-
tion names with a customized tokenizer and part-
of-speech (PoS) tagger. A set of hand-defined
mappings is then used to map PoS sequences to
lexicalisations. For instance, given the property
name HASADRESS, this approach will produce the
candidate lexicalisation “the address of S is O”
where S and O are place-holders for the lexicali-
sations of the subject and object entity in the input
RDF triple.

(Walter et al., 2013; Walter et al., 2014a; Wal-
ter et al., 2014b) describes an approach for in-
ducing a lexicon mapping DBPedia properties to
possible lexicalisations. The approach combines
a label-based and a pattern-based method. The
label-based method extracts lexicalisations from
property names using additional information (e.g.,
synonyms) from external resources. The pattern-
based method extract lexicalisations from a text

corpus by retrieving sentences containing entities
that are related by a DBPedia property and gen-
eralising over the dependency paths that connect
them using hand-written patterns and frequency
counts.

While these approaches can be effective, (Tre-
visan, 2010)’s approach fails to account for
“opaque” property names (i.e., property such as
CREW1UP whose lexicalisation is not directly de-
ducible from the tokens making up that property
name) and the pattern-based approach of (Walter
et al., 2013), because it relies on frequency counts
rather than lexical relatedness, allows for lexical-
isations that may be semantically unrelated to the
input property. In contrast, we learn continuous
representations of both KB properties and words
and exploit these to rank candidate lexicalisations
which are either lexically- or extensionally-related
to the properties to be lexicalised. In this way, we
consider both types of property names while sys-
tematically checking for semantic relatedness.

Relation Extraction Earlier Information Ex-
traction (IE) systems learned an extractor for each
target relation from labelled training examples
(Riloff, 1996; Soderland, 1999). For instance,
(Riloff, 1996) first extract relation mention pat-
terns from the corpus then rank these based on the
number of time a relation pattern occurs in a text
labelled with the target relation.

More recent work on Open IE has focused on
building large scale knowledge bases such as Re-
verb by extracting arbitrary relations from text
(Wu and Weld, 2010; Fader et al., 2011; Mohamed
et al., 2011; Nakashole et al., 2012).

While relation extraction can be viewed as the
mirror task of relation lexicalisation, there are im-
portant differences. Our lexicalisation task differs
from domain specific IE in that it is unsupervised
(we do not have access to annotated data). It also
differs from open IE in that the set of properties
to be lexicalised is predefined whereas, by defi-
nition, in open IE, the set of relations to be ex-
tracted is unrestricted. That is, while we aim to
find the possible lexicalisations of a given set of
relations (here DBPedia properties), open IE seeks
to extract an unrestricted set of relations from text.
Nevertheless, (Nakashole et al., 2012) includes a
clustering phase which permits grouping relation
clusters with a predefined set of properties such
as, in particular, DBPedia properties. In Section 6,
we therefore compare our results with the lexical-

220



Property CROSSES

L-Candidate lexicalisation “Old Blenheim Bridge spans Schoharie Creek”

Property CREW1UP

RDF Triple 〈 STS-130, CREW1UP, GEORGE D. ZAMKA 〉
E-Candidate lexicalisation “Zamka served as the commander of mission STS-130”

Figure 1: Example L- and E-candidate lexicalisation phrases.

isations output by (Nakashole et al., 2012)’s ap-
proach.

Embedding-based Approaches The model we
propose is inspired by (Bordes et al., 2014). In
(Bordes et al., 2014), low dimensional embed-
ding of words and KB symbols are learned so that
representations of questions and their correspond-
ing answers end up being similar in the embed-
ding space. The embeddings are learned using au-
tomatically generated questions from KB triples
and a dataset of questions marked as paraphrases
(WikiAnswers, (Fader et al., 2011)). We adapt
this model to the lexicalisation task by generat-
ing noisy lexicalisations of KB triples using a sim-
ple generation approach and by exploiting differ-
ent paraphrase resources (c.f. Section3). Our ap-
proach further differs from (Bordes et al., 2014)
in that we combine this embedding based frame-
work with a pre-selection of candidate lexicali-
sations which reflects knowledge about the prop-
erty extension and the property name. As men-
tioned in Section 1, E-related candidate lexical-
isation phrases are sentences mentioning subject
and/or object of the property being considered for
lexicalisation while L-related candidate lexicalisa-
tion phrases are phrases containing synonyms or
derivationally related words of the token making
up the name of that property. In this way, we pro-
vide a joint modelling of the impact of lexical and
extensional similarity on lexicalisation.

3 Approach

Given a KB property p, our task is to find a set
of possible lexicalisations Lp for p. For instance,
given the property HASWONPRIZE, our goal is
to automatically infer lexicalisations such as was
honoured with and received.

3.1 Lexicalisation Algorithm

Our lexicalisation algorithm is composed of the
following steps:

Embeddings Using distant supervision, we
learn embeddings of words and KB symbols such
that the representations of KB triples, of sentences
artificially generated from these triples and of their
paraphrases are similar in the embedding space.

Candidate Lexicalisations Using WordNet and
the extension of RDF properties (i.e., the set of
pairs of entities related by that property), we build
sets of candidate lexicalisation phrases. “Subject
Relation Object” phrases are extracted from the
set of candidate sentences using Reverb (Etzioni
et al., 2011). Reverb is a tool for Open IE which
extracts relation mentions from text based on fre-
quency counts and regular expression filters.

Ranking Using the dot product on embedding
based representations of triples and candidate lex-
icalisation phrases, we rank candidate lexicalisa-
tions of properties.

Extractions We apply some normalisation rules
on the relation mention of the ranked lexicalisa-
tions to eliminate “duplicates”. These rules con-
sist in a small set of basic patterns to detect and
remove adverbs, adjectives, determiners, etc. For
instance, given the following relation mentions al-

ways led by, is also led by and is currently led by only
one version will be extracted that is led by. From
the top ranked lexicalisation phrases according to
some threshold (e.g. top 10), we extract the lexi-
calisation set Lp for property p. Lexicalisations in
Lp are relation mentions from the ranked lexicali-
sation phrases.

3.2 Learning Words and KB symbols
Embeddings

Similar to the work of (Bordes et al., 2014), we use
distant supervision and multitask training to learn
embeddings of words and KB symbols.

Training Set Generation We train on two
datasets, one aligning KB triples with automati-
cally generated verbalisations of these triples and

221



the other, aligning paraphrases. The first dataset
(T ) is used to learn a similarity function between
KB symbols and words, the second (P) to account
for the many ways in which a given property may
be verbalised.

Triples and Sentences (T ) We build a training
corpus of KB triples and Natural Language sen-
tences by combining the pattern based lexicalisa-
tion approach of (Trevisan, 2010) (c.f. Section 2)
with a simple grammar based generation step. We
apply this approach to map KB property names
to syntactic constructions and then use a simple
grammar to generate sentences from KB triples.
For instance, the triple in (1a) will yield the sen-
tences in (1b-g):

(1) a. 〈 DUMBARTON BRIDGE, LOCATEDINAREA,

MENLO PARK CALIFORNIA 〉
b. “The Dumbarton Bridge should be lo-

cated in menlo park california.”
c. “It should be located in menlo park cali-

fornia.”
d. “Dumbarton Bridge located in menlo park

california.”
e. “Dumbarton Bridge which should be lo-

cated in menlo park california.”
f. “Menlo Park California in which dumbar-

ton bridge is located.”
g. “The Dumbarton Bridge should be lo-

cated in menlo park california.”

On average, each property is associated with
5.9 sentences. Given a training pair (t, s) such that
t = (sk, pk, ok), we generate negative examples
by corrupting the triple i.e., by producing pairs
of the form (t′, s) such that t′ = (sk, p

′
k, ok) and

(sk, ok) /∈ p′k.

Paraphrases (P). To learn embeddings and
a similarity function that takes into account the
various ways in which a property can be lex-
icalised, we supplement our training data with
pairs of paraphrases contained in the PPDB para-
phrase database, in the WikiAnswers dataset and
in DBPedia (DBPP). Positive examples (pi, pj)
are taken from these datasets and negative ex-
amples are produced by creating corrupted pairs
(pi, pl) such that pi is not in the paraphrase dataset
of pl and vice versa.

The PPDB database was extracted from
bilingual parallel corpora following (Bannard

and Callison-Burch, 2005)'s bilingual pivoting
method1. PPDB comes pre-packaged in 6 sizes:
S to XXXL. The smaller packages contain only
better-scoring, high-precision paraphrases, while
the larger ones aim for high coverage. Addition-
ally PPDB is broken down into lexical paraphrases
(i.e. one word to one word), phrasal paraphrases
(i.e. multi-word phrases), as well as syntactic
paraphrases which contain non-terminals. We use
PPDB version 2.0 M size lexical and phrasal sets
which contain overall 3525057 paraphrase pairs.
We choose to use medium size sets to incorporate
some variability while still favouring higher qual-
ity paraphrases. As for the type of paraphrases, we
took only the lexical and phrasal ones given that
our goal is geared to acquiring alternative lexical-
isations in terms of wording rather than syntactic
variation.

Wikianswers is a corpus of 18M question-
paraphrase pairs collected by (Fader et al., 2013),
with 2.4M distinct questions in the corpus. Be-
cause these pairs have been labelled collabora-
tively, the data is highly noisy ((Fader et al., 2013)
estimated that only 55% of the pairs were actual
paraphrases).

Finally, the BDPP dataset consists of (entity,
class) pairs extracted from the DBPedia ontology.
They provide a bridge between the entity names
appearing in the DBPedia triples and the more
generic common nouns which may be used in text.

Using the resources and tools just described,
we create a triple/sentence corpus T consisting of
317853 triple/sentence pairs obtained from 53384
KB triples of 149 relations. The paraphrase corpus
P contains 3525057 (PPDB), 220998 (WikiAn-
swers) and 54489 (DBPP) paraphrase pairs. Fig-
ure 2 shows some positive and negative training
examples drawn from the T and P datasets.

Training Using a training corpus created as de-
scribed in the previous section, we learn a similar-
ity function S between triples and candidate lexi-
calisations which is defined as:

St/s(t, s) = f(t)>.g(s) (1)

with
f(t) = K>.φ(t) (2)

and
g(s) = W>.ψ(s) (3)

1Briefly, the intuition underlying the bilingual pivoting
method is that expressions sharing the same translation into a
target language are paraphrases.

222



T
(t, s) (〈 ARISTOTLE, INFLUENCED, CHRISTIAN PHILOSOPHY 〉 , “Christian philosophy who is influenced by Aristotle.”)
(t′, s) (〈 ARISTOTLE, COMPUTINGMEDIA, CHRISTIAN PHILOSOPHY 〉 , “Christian philosophy who is influenced by Aristotle.”)

P (PPDB)

(pi, pj) (“collaborate”, “cooperate”)
(pi, pl) (“collaborate”, “improving”)
(pi, pj) (“is important to emphasize that”, “is notable that”)
(pi, pl) (“is important to emphasize that”, “are using”)

P (Wikianswers)

(pi, pj) (“much coca cola be buy per year”, “much do a consumer pay for coca cola”)
(pi, pl) (“much coca cola be buy per year”, “information on neem plant”)

P (DBPP)

(pi, pj) (“Amsterdam”, “Place”)
(pi, pl) (“Amsterdam”, “Novels first published in serial form”)

Figure 2: Examples of positive examples present in the T and P training datasets with their correspond-
ing corrupted negative counterpart.

K ∈ Rnk×d and W ∈ Rnw×d are the embed-
ding matrices for KB symbols and for words re-
spectively with nk, the number of distinct sym-
bols in the knowledge base and nw, the number
of distinct word forms in the text corpus. Further-
more, φ(t) and ψ(s) are binary vectors indicating
whether a KB symbol/word is present or absent in
t/s. Thus, f(t) and g(s) are the embeddings of
t and s and St/s scores their similarity by taking
their dot product.

To learn word embeddings which capture the
similarity between a triple and a set of paraphrases
(rather than just the similarity between a triple
and artificially synthesised sentences), we multi-
task the training of our model with the task of
paraphrase detection. That is, the weights of the
W matrix for words are learnt with the training
of the triple/sentence similarity function St/s and
the training of a similarity function Sp for para-
phrases which uses the same embedding matrixW
for words and is trained on P , the paraphrase cor-
pus. The phrase similarity function Sp between
two natural language phrases pi and pj is defined
as follows:

Sp(pi, pj) = f(pi)>.f(pj) (4)

Similarly to (Bordes et al., 2014), we train our
model using a margin-based ranking loss func-
tion so that scores of positive examples should be
larger than those of negative examples by a margin
of 1. That is, for St/s, we minimize:

∀i, j, ∀[1− Ss/t(ti, si) + Ss/t(tj , si)] (5)

where (ti, si) is a positive triple/sentence exam-
ple and (tj , si) a negative one. Similarly, when
training on paraphrase data, the ranking loss func-
tion to minimise is:

∀i, j, l,∀[1− Sp(pi, pj) + Sp(pi, pl)] (6)

where (pi, pj) is a positive example from the
paraphrase corpus P and (pi, pl) a negative one.

4 Implementation

The model is implemented in Python using the
Keras(Chollet, 2015) library with Theano back-
end.

We initialise theW matrix with pre-trained vec-
tors which already provide a rich representation
for words. We use the publicly available GloVe
(Pennington et al., 2014) vectors2 of length 100.
These vectors were trained on 6 billions words
from Wikipedia and the English Gigaword. We
set the dimension d of the K and W matrices to
100. For K we use uniform initialisation.

The size of the vocabulary for theW matrix, the
nw dimension, is 130970 words. This is consider-
ing all words appearing in the T and P sets. The
size of the K matrix, the nk dimension, is 43797
counting both KB entities and relations.

The training for both similarity functions St/s

and Sp is performed with Stochastic Gradient De-
scent. The learning rate is set to 0.1 and the num-
ber of epochs to 5. Training run approximately 15
hours3.

2http://nlp.stanford.edu/projects/
glove/

3A first phase run on a machine with 1 CPU Intel Xeon

223



5 Experiments

DBPedia4 is a crowd-sourced knowledge based
extracted from Wikipedia and available on the
Web in RDF format. Available as Linked Dataon
the web, the DBPedia knowledge base defines
Linked Data URIs for millions of concepts. It has
become a de facto central hub of the web of data
and is heavily used by systems that employ struc-
tured data for applications such as web-based in-
formation retrieval or search engines.

Like many other large knowledge bases (e.g.,
Freebase or Yago) available on the web, DBPe-
dia lacks lexical information stating how DBPe-
dia properties should be lexicalised. We apply our
lexicalisation model to DBPedia object properties.
We construct candidate lexicalisation sets in the
following way.

Candidate Lexicalisations As mentioned in
Section 1, we consider two main ways of building
sets of candidate lexicalisations for a given
property p.

E-LEXp : Let WKPp be the set of sentences
extracted from Wikipedia which contain at least
one mention of two entities that are related in DB-
Pedia by the property p. WKPp was built using the
pre-processing tools5 of the MATOLL framework
(Walter et al., 2013; Walter et al., 2014b). Then
E-LEXp is the corpus of candidate lexicalisations
extracted from WKPp using Reverb.

L-LEXp : Given WKP the corpus of Wikipedia
sentences, L-LEXp is the corpus of relation
mentions extracted from WKP using Reverb and
filtered to contain only mentions which include
words that are lexically related to the tokens
making up the property name. Lexically related
words include all synonyms and all derivationally
related words listed in Wordnet for a given token.

6 Evaluation and Results

We compare the output of our lexicalisation
method with the following resources and ap-
proaches.

X3440, 4 cores/CPU, 16GB RAM and a second phase on a
machine with 2 CPUs Intel Xeon L5420, 4 cores/CPU, 16GB
RAM.

4http://wiki.dbpedia.org/
5https://github.com/ag-sc/matoll

TEAM, COUNTRY, ORDER, DEATHPLACE,
OCCUPATION, KINGDOM, NATIONALITY,
BATTLE, HOMETOWN, AWARD, PREDECESSOR,
PUBLISHER, DISTRIBUTOR, OWNER, RECORDEDIN,
ALBUM, PRODUCT, PARENT, AFFILIATION,
EDUCATION, ROUTEEND, ORIGIN, NEARESTCITY,
ARCHITECT, COMPOSER, MOUNTAINRANGE,
FOUNDEDBY, INFLUENCED, GARRISON, LEADER,
PROGRAMMINGLANGUAGE

Table 1: Set of DBPedia object properties used in
the evaluation.

DBlexipediae: a lexicon6 automatically inferred
from Wikipedia using the method described in
(Walter et al., 2013; Walter et al., 2014a; Wal-
ter et al., 2014b) (c.f. section 2). Lexical entries
are inferred using either the extension of the prop-
erties (by retrieving sentences containing entities
that are related by a DBPedia property and gen-
eralising over the dependency paths that connect
them.) or synonyms of the words contained in the
property name.
PATTY: a lexicon automatically inferred from
web data using relation extraction and clustering
(c.f. (Nakashole et al., 2012)).
QUELO: a lexicon automatically derived using
the method described in (Trevisan, 2010) (c.f.
section 2). Lexical entries are derived by first,
tokenizing and pos tagging property names
and second, mapping the resulting pos-tagged
sequences to pre-defined mention patterns.

For the quantitative evaluation, we use the lex-
icon developed manually for DBPedia properties
by (McCrae et al., 2011) as a gold standard7. We
test on a held-out set of 30 properties8 chosen from
DBPedia and which were present in the gold stan-
dard lexicon, in the other systems we compare
with and in the available E-Lexp corpus. Table 1
lists the set of properties.

We compute precision (Correct/Found), recall

6For this evaluation we use the version available for
download at http://dblexipedia.org/download
and we use only the English lexical entries.

7This lexicon is available at https://github.com/
ag-sc/lemon.dbpedia

8The selection of these properties was based, on one
hand, on the frequency with a third of the selected prop-
erties appearing more than 80000 times in DBPedia, a
third appearing less than 20000 times and a third ap-
pearing between 20000 and 80000 times (min. is 5936
for PROGRAMMINGLANGUAGE and max. is 1825970 for
TEAM). On the other hand, we include properties with dif-
ferent name/label patterns imposing differences in verbali-
sation difficulty, e.g. compound nouns as ROUTEEND or
PROGRAMMINGLANGUAGE.

224



(Correct/GOLD) and F1 measure of each of the
above resources. Recall is the proportion of (prop-
erty, lexicalisation) pairs present in GOLD which
are present in the resource being evaluated, pre-
cision the proportion in a resource which is also
present in GOLD and F1 is the harmonic mean of
precision and recall9.

In our setup though, precision (and therefore
F1) values are artificially decreased because the
reference lexicon is small (2.4 lexicalisations in
average per property) and often fails to include all
possible lexicalisations. The number of correct
lexicalisations can therefore be under-estimated
while the number of found lexicalisations is usu-
ally larger than the number of gold lexicalisations
and therefore much larger than the number of cor-
rect (= GOLD ∩ Found) lexicalisations.

We report results using different sets of lexi-
calisation candidates (L-LEX, E-LEX, their union
and their intersection) and different thresholds or
methods for selecting the final set of lexicalisa-
tions. These include: retrieving the n-best lexi-
calisations (k=10) versus using an adaptive thresh-
old which varies depending on the size of the set
of candidate lexicalisations and on the distribu-
tions of its ranking scores. We tried taking all
lexicalisations over the median (median), over the
mid-range ((min+max)/2) or in the third quartile
(Q3). We also tested an alternative ranking tech-
nique where the score of each lexicalisation is the
product of its similarity score (dot product of the
embedding vectors representing the property and
the lexicalisation) with the frequency of this par-
ticular lexicalisation in the set of candidate lex-
icalisations10. We rerank the lexicalisations us-
ing these new scores and consider only the lexi-
calisations in the third quartile of the distribution
(FreqQ3). Further if this results in having either
less than 7 or more than 25 lexicalisations, we ig-
nore the Q3 constraint and take the 7 and 25 best
respectively (FreqQ3Limit(7,25)).

Table 3 summarises the results.

9To determine whether a given property lexicalisation is
correct, i.e. present in the GOLD, we use “soft” compari-
son rather than strict string matching. This consists in check-
ing whether the stemmed gold lexicalisation is contained in
a given candidate lexicalisation. For instance, the candidate
“main occupation of” and gold “occupation of” are consid-
ered as a match.

10In the set of candidate lexicalisations, the same lexicali-
sation may occur with minor variations. We compute the fre-
quency of a given lexicalisation by removing adjectives and
adverbs and counting the number of repeated occurrences af-
ter removing these.

Recall In terms of recall, our results generally
outperform QUELO, PATTY and DBlexipediae.

The low recall score of QUELO shows that sim-
ply using patterns based on the property name
does not suffice to find appropriate property lex-
icalisations. This is true in particular of properties
such as ROUTEEND where the correct lexicalisa-
tion is difficult to guess from the property name.

DBlexipediae at k=10 scores lower (0.29)
than the corresponding version of our approach
union(k=10), R:0.38). Interestingly, for our ap-
proach, better recall values are consistently ob-
tained using L-LEX suggesting that many of the
verbalisations found in GOLD can be extracted
from text that is unrelated to the extension of DB-
Pedia properties. This is a nice feature as this per-
mits avoiding the data sparsity issue which arises
when a DBPedia property has either a restricted
extension or a small set WKPp of candidate lex-
icalisations. Indeed, we found that out of a set
of 149 DBPedia properties, the MATOLL corpus
did not provide any sentences for 19 of them. In
such cases, an approach based only on extension-
ally related sentences of the property would have
zero recall. This is in line with the results of (Wal-
ter et al., 2013; Walter et al., 2014a) who observe
that such an approach yields a recall of 0.35 whilst
combining it with a lexically based approach (us-
ing synonyms of the tokens occurring in the prop-
erty name) permits increasing recall to 0.5.

Finally, although PATTY has a comparatively
high recall value (0.59), its precision is very low
(0.0015) and versions of our approach with com-
parable precision (e.g., E-LEX(All)) have a much
higher recall (R: 0.80).

Precision As shown in Table 3, the retrieval ap-
proach which gives the best results in terms of
both precision and F1 is in fact to take the 10-best.
Together with the much lower precision achieved
by the random baselines (Random*k=10), this re-
sult suggests that the similarity function learned
by our model appropriately captures the similarity
between DBPedia properties and their lexicalisa-
tions.

Unsurprisingly, QUELO has the highest preci-
sion as it only guesses lexicalisation based on the
tokens making up the property name. For instance,
for noun property names like OWNER it pro-
duces the following two lexicalisations: “owner”
and “owner of”; for verb based property names
like RECORDEDIN it produces the lexicalisation

225



System/goldLemonDBPPatterns Avg.NB Recall Precision F1
L-LEX(k=10) 9.9 0.3611 0.0875 0.1409
L-LEX(median) 343 0.7500 0.0052 0.0104
L-LEX((min+max)/2) 216 0.6250 0.0069 0.0137
L-LEX(Q3) 104 0.5000 0.0115 0.0225
L-LEX(FreqQ3) 104 0.5139 0.0118 0.0231
L-LEX(FreqQ3Limit(7,25)) 218 0.4583 0.0505 0.0909
L-LEX(All) 687.4 0.8194 0.0029 0.0057
E-LEX(k=10) 10 0.3333 0.0800 0.1290
E-LEX(median) 778.2 0.7222 0.0022 0.0044
E-LEX((min+max)/2) 301.8 0.6806 0.0054 0.0107
E-LEX(Q3) 251 0.6250 0.0059 0.0118
E-LEX(FreqQ3) 251 0.6250 0.0059 0.0118
E-LEX(FreqQ3Limit(7,25)) 23.3 0.5000 0.0514 0.0933
E-LEX(All) 1557 0.8056 0.0012 0.0025
union(k=10) 10 0.3889 0.0933 0.1505
union(median) 543 0.8194 0.0036 0.0072
union((min+max)/2) 47.7 0.6389 0.0320 0.0610
union(Q3) 86.7 0.5972 0.0165 0.0320
union(FreqQ3) 85.8 0.6667 0.0185 0.0361
union(FreqQ3Limit(7,25)) 10.8 0.4861 0.1080 0.1768
union(All) 2162.5 0.9444 0.0010 0.0021
intersec(k=10) 0.4 0.0556 0.3636 0.0964
intersec(median) 35.27 0.4444 0.0305 0.0571
intersec((min+max)/2) 14.8 0.3333 0.0547 0.0939
intersec(Q3) 8.6 0.2639 0.0748 0.1166
intersec(FreqQ3) 12.3 0.2917 0.0575 0.0961
intersec(FreqQ3Limit(7,25)) 2.2 0.2500 0.2813 0.2647
intersec(All) 81.9 0.5417 0.0159 0.0309
L-LEXRandom(k=10) 9.9 0.2083 0.0505 0.0813
E-LEXRandom(k=10) 10 0.0833 0.0200 0.0323
QUELO 2.13 0.2917 0.3281 0.3088
DBlexipediae(k=10) 5.4 0.2500 0.1104 0.1532
PATTY 936 0.5694 0.0015 0.0029

Figure 3: Micro-averaged Precision, Recall and F1 with respect to GOLD. The column Avg.NB indicates
the averaged number of candidate lexicalisations for each system.

PROGRAMMINGLANGUAGE written in, uses, include, based on, supports, is a part of, pro-
gramming language for (4/1)

AFFILIATION member of, associated with, affiliated with, affiliated to, affili-
ate of, accredited by, tied to, founded in, president of, associate
member of (4/1)

COUNTRY village in, part of, one of, located in, commune in, town in, born
in, refer to, county in, country in, city in (2/1)

MOUNTAINRANGE mountain in, located in, include, range from, mountain of,
mountain range in, part of, lies in, reach, peak in, find in, high-
est mountain in (8/1)

DISTRIBUTOR sell, appear in, allocate to, air on, release, make, star in, appear
on (2/2)

LEADER lead to, leader of, led by, is a leader in, visit, become, lead, lead
producer of, president of, elected leader of, left (6/3)

Figure 4: Example Lexicalisations output by our System (Union.FreqQ3Limit7-25). Gold items are in
italics. Items in bold indicates a correct lexicalisation absent from the gold. The number N/G in bracket
indicates the number N of lexicalisations produced by our system that are not in the gold standard and
the number G of items in the gold standard.

226



“recorded in”. On these two properties, QUELO
perfectly coincides with the entries defined in
GOLD. This explains the high F1 obtained by
QUELO. However, as argued in the previous sec-
tion, QUELO’s approach fails to account for cases
where the relation name is indirect or opaque.
Moreover, it does not support the generation
of alternative lexicalisations. For the property
EDUCATION, the gold standard defines the the lex-
ical entries “attend”, “go to” and “study at” which
QUELO fails to produce.

DBlexipediae has a precision score (0.11) com-
parable to the corresponding version of our ap-
proach (union(k=10), P:0.09) and PATTY has a
very low precision (P:0.0015). A manual exami-
nation of the data shows that the relation extraction
approach fails to find a sufficiently large number
of distinct property lexicalisations. The lexicali-
sations found often contain many near repetitions
(e.g., “has graduated from, graduated from, gradu-
ates”) but few distinct paraphrases (e.g., “graduate
from, study at”).

To better assess, the precision of our sys-
tem we therefore manually examined the results
of our system and annotated all outputs lexi-
calisations which were correct but not in the
gold. Based on this updated gold, precision for
union.FreqQ3Limit7-25 is in fact, 0.289.

Example Output Table 4 shows some example
output of our system (for union.FreqQ3Limit7-
25)11. These examples show that our system cor-
rectly predicts additional lexicalisations that are
absent from GOLD.

They also show that our approach can
produce both L- and E-related lexicalisa-
tions. Thus for instance, for the property
PROGRAMMINGLANGUAGE, our model produces
the lexicalisation “programming language for”
which is clearly an L-lexicalisation that can
be directly derived from the property name.
However, it also derives more context-sensitive
E-lexicalisations such as “written in”, “uses” and
“based on” which are not lexically related to the
property name but can be found by considering
E-related candidate lexicalisations i.e., sentences
such as “FastTacker Digit was written in Pas-
cal” which contain entities that are arguments
of the PROGRAMMINGLANGUAGE property.

11The complete set of extractions is available at
http://www.loria.fr/˜perezlla/content/
sw_resources/union.FreqQ3Limit.txt .

Similarly, the COUNTRY property whose gold
lexicalisation is “located in” (the RDF triple
〈 Sakhalin Oblast, country, Russia 〉 can be
verbalised as “ Sakhalin Oblast is located in
Russia”), is correctly assigned the lexicalisations
“located in” and “part of”. Interestingly, our
approach also yield more specific lexicalisations
such as “is a village/commune/town/county in”
which may also be correct lexicalisations given
the appropriate subject. For instance, “is a town
in” is a correct lexicalisation of the COUNTRY

property given the triple 〈 Paris, country, France 〉.

7 Conclusion

We use an embeddings based framework for iden-
tifying plausible lexicalisations of KB properties.
While embeddings have been much used in do-
mains such as question answering, semantic pars-
ing and relation extraction, they have not been
used so far for the lexicalisation task. Conversely,
existing approaches to lexicalisation which ex-
ploits the similarity between property name and
candidate lexicalisations do so on the basis of dis-
crete representations such as WordNet Synsets. In
contrast, we learn embeddings of words and KB
symbols using distant supervision. We show that,
when applied to DBPedia object properties, our
approach yields competitive results with these dis-
crete approaches.

As future work, we plan to conduct a larger
scale evaluation. This will include the application
of the approach to datatype properties and test on
a larger set of properties.

The scoring function used by our approach is
based on a bag-of-words representation of natural
language phrases. We have observed that tuples
and candidate lexicalisation phrases like 〈 AMERI-

CAN FILM INSTITUTE, LOCATION, CALIFORNIA 〉 and “A new city
was built on a nearby location” are scored high as
they share some highly related words. We plan to
explore whether a more complex representation of
natural language phrases could remedy this short-
coming.

Acknowledgements

We thank the French National Research Agency
for funding the research presented in this paper in
the context of the WebNLG project. We would
also like to thank Sebastian Walter for kindly pro-
viding us with the MATOLL corpus.

227



References
Colin Bannard and Chris Callison-Burch. 2005. Para-

phrasing with bilingual parallel corpora. In Pro-
ceedings of the 43rd Annual Meeting on Association
for Computational Linguistics, pages 597–604. As-
sociation for Computational Linguistics.

Antoine Bordes, Jason Weston, and Nicolas Usunier.
2014. Open question answering with weakly super-
vised embedding models. CoRR, abs/1404.4326.

Fran¸cois Chollet. 2015. Keras. https://
github.com/fchollet/keras.

Oren Etzioni, Anthony Fader, Janara Christensen,
Stephen Soderland, and Mausam Mausam. 2011.
Open information extraction: The second genera-
tion. In IJCAI, volume 11, pages 3–10.

Anthony Fader, Stephen Soderland, and Oren Etzioni.
2011. Identifying relations for open information ex-
traction. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing,
pages 1535–1545. Association for Computational
Linguistics.

Anthony Fader, Luke S Zettlemoyer, and Oren Etzioni.
2013. Paraphrase-driven learning for open question
answering. In ACL (1), pages 1608–1618. Citeseer.

John McCrae, Dennis Spohr, and Philipp Cimiano.
2011. Linking lexical resources and ontologies on
the semantic web with lemon. In The semantic web:
research and applications, pages 245–259. Springer.

Thahir P Mohamed, Estevam R Hruschka Jr, and
Tom M Mitchell. 2011. Discovering relations be-
tween noun categories. In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing, pages 1447–1455. Association for Com-
putational Linguistics.

Ndapandula Nakashole, Gerhard Weikum, and Fabian
Suchanek. 2012. Discovering and exploring rela-
tions on the web. Proceedings of the VLDB Endow-
ment, 5(12):1982–1985.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1532–
1543.

A. Rector, N. Drummond, M. Horridge, J. Rogers,
H. Knublauch, R. Stevens, H. Wang, and C. Wroe.
2004. Owl pizzas: Practical experience of teaching
owl-dl: Common errors & common patterns. Engi-
neering Knowledge in the Age of the Semantic Web,
pages 63–81.

Ellen Riloff. 1996. Automatically generating extrac-
tion patterns from untagged text. In Proceedings
of the national conference on artificial intelligence,
pages 1044–1049.

Stephen Soderland. 1999. Learning information ex-
traction rules for semi-structured and free text. Ma-
chine learning, 34(1-3):233–272.

Marco Trevisan. 2010. A portable menuguided natural
language interface to knowledge bases for querytool.
Master’s thesis, Free University of Bozen-Bolzano
(Italy) and University of Groningen (Netherlands).

Sebastian Walter, Christina Unger, and Philipp Cimi-
ano. 2013. A corpus-based approach for the induc-
tion of ontology lexica. In Natural Language Pro-
cessing and Information Systems, pages 102–113.
Springer.

Sebastian Walter, Christina Unger, and Philipp Cimi-
ano. 2014a. Atolla framework for the automatic
induction of ontology lexica. Data & Knowledge
Engineering, 94:148–162.

Sebastian Walter, Christina Unger, and Philipp Cimi-
ano. 2014b. M-atoll: a framework for the lexicaliza-
tion of ontologies in multiple languages. In The Se-
mantic Web–ISWC 2014, pages 472–486. Springer.

Fei Wu and Daniel S Weld. 2010. Open information
extraction using wikipedia. In Proceedings of the
48th Annual Meeting of the Association for Compu-
tational Linguistics, pages 118–127. Association for
Computational Linguistics.

228


