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Abstract

The linguistic experiences of a person are
an important part of their individuality. In
this paper, we show that people can be
modelled as vectors in a semantic space,
using their personal interaction with spe-
cific language data. We also demonstrate
that these vectors can be taken as repre-
sentative of ‘the kind of person’ they are.
We build over 4000 speaker-dependent
subcorpora using logs of Wikipedia ed-
its, which are then used to build distri-
butional vectors that represent individual
speakers. We show that such ‘person vec-
tors’ are informative to others, and they
influence basic patterns of communication
like the choice of one’s interlocutor in
conversation. Tested on an information-
seeking scenario, where natural language
questions must be answered by addressing
the most relevant individuals in a commu-
nity, our system outperforms a standard in-
formation retrieval algorithm by a consid-
erable margin.

1 Introduction

Distributional Semantics (DS) (Turney and Pan-
tel, 2010; Clark, 2012; Erk, 2012) is an approach
to computational semantics which has historical
roots in the philosophical work of Wittgenstein,
and in particular in the claim that ‘meaning is
use’, i.e. words acquire a semantics which is a
function of the contexts in which they are used
(Wittgenstein, 1953). The technique has been used
in psycholinguistics to model various phenom-
ena, from priming to similarity judgements (Lund
and Burgess, 1996), and even aspects of lan-
guage acquisition (Landauer and Dumais, 1997;
Kwiatkowski et al., 2012). The general idea is that

an individual speaker develops the verbal side of
his or her conceptual apparatus from the linguistic
experiences he or she is exposed to, together with
the perceptual situations surrounding those expe-
riences.

One natural consequence of the distributional
claim is that meaning is both speaker-dependent
and community-bound. On the one hand, depend-
ing on who they are, speakers will be exposed
to different linguistic and perceptual experiences,
and by extension develop separate vocabularies
and conceptual representations. For instance, a
chef and a fisherman may have different represen-
tations of the word fish (Wierzbicka, 1984). On the
other hand, the vocabularies and conceptual rep-
resentations of individual people should be close
enough that they can successfully communicate:
this is ensured by the fact that many linguistic ut-
terances are shared amongst a community.

There is a counterpart to the claim that
‘language is speaker-dependent’: speakers are
language-dependent. That is, the type of person
someone is can be correlated with their linguis-
tic experience. For instance, the fact that fish and
boil are often seen in the linguistic environment
of an individual may indicate that this individual
has much to do with cooking (contrast with high
co-occurrences of fish and net). In some contexts,
linguistic data might even be the only source of in-
formation we have about a person: in an academic
context, we often infer from the papers a person
has written and cited which kind of expertise they
might have.

This paper offers a model of individuals based
on (a subset of) their linguistic experience. That is,
we model how, by being associated with particular
types of language data, people develop a unique-
ness representable as a vector in a semantic space.
Further, we evaluate those ‘person vectors’ along
one particular dimension: the type of knowledge
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we expect them to hold.
The rest of this paper is structured as follows.

We first give a short introduction to the topic
of modelling linguistic individuality (§2) and we
discuss how DS is a suitable tool to represent
the associated characteristics for a given person
(§3). We describe a model of individuals in a
community using ‘person vectors’ (§4). We then
highlight the challenges associated with evaluat-
ing such vectors, and propose a prediction task
which has for goal to identify someone with a par-
ticular expertise, given a certain information need
(§5, §6). Concretely, we model a community of
over 4000 individuals from their linguistic interac-
tion with Wikipedia (§7). We finally evaluate our
model on the suggested task and compare results
against a standard information retrieval algorithm.

2 Individuality and how it is seen

A speaker’s linguistic experience—what they
read, write, say and hear—is individual in all
the ways language can be described, from syn-
tax to pragmatics, including stylistics and regis-
ter. One area of work where linguistic individual-
ity has been extensively studied is author profiling
and identification (Zheng et al., 2006; Stamatatos,
2009). It has been shown, in particular, how sub-
tle syntactic and stylistic features (including meta-
linguistic features such as sentence length) can be
a unique signature of a person. This research, of-
ten conducted from the point of view of forensic
linguistics, has person identification as its main
goal and does not delve much into semantics, for
the simple reason that the previously mentioned
syntactic and structural clues often perform better
in evaluation (Baayen et al., 1996).

This paper questions in which way the seman-
tic aspects of someone’s linguistic experience con-
tributes to their individuality. One aspect that
comes to mind is variations in word usage (as
mentioned in the introduction). Unfortunately,
this aspect of the problem is also the most diffi-
cult to approach computationally, for sheer lack
of data: we highlight in §5 some of the reasons
why obtaining (enough) speaker-specific language
data remains a technical and privacy minefield.
Another aspect, which is perhaps more straight-
forwardly modellable, is the extent to which the
type of linguistic material someone is exposed to
broadly correlates with who they are. It is likely,
for instance, that the authors of this paper write

and read a lot about linguistics, and this correlates
with broad features of theirs, e.g. they are com-
putational linguists and are interested in language.
So, as particular stylistic features can predict who
a person is, a specific semantic experience might
give an insight into what kind of person they are.

In what follows, we describe how, by selecting a
public subset of a person’s linguistic environment,
we can build a representation of that person which
encapsulates and summarises a part of their indi-
viduality. The term ‘public subset’ is important
here, as the entire linguistic experience of an indi-
vidual is (at this point in time!) only accessible to
them, and the nature of the subset dictates which
aspect of the person we can model. For instance,
knowing what a particular academic colleague has
written, read and cited may let us model their work
expertise, while chatting with them at a barbecue
party might give us insight into their personal life.

We further contend that what we know about a
person conditions the type of interaction we have
with them: we are more likely to start a conver-
sation about linguistics with someone we see as a
linguist, and to talk about the bad behaviour of our
dog with a person we have primarily modelled as
a dog trainer. In other words, the model we have
of people helps us successfully communicate with
them.

3 Some fundamentals of DS

The basis of any DS system is a set of word mean-
ing representations (‘distributions’) built from
large corpora. In their simplest form,1 distribu-
tions are vectors in a so-called semantic space
where each dimension represents a term from the
overall system’s vocabulary. The value of a vec-
tor along a particular dimension expresses how
characteristic the dimension is for the word mod-
elled by the vector (as calculated using, e.g., Point-
wise Mutual Information). It will be found, typ-
ically, that the vector cat has high weight along
the dimension meow but low weight along poli-
tics. More complex architectures result in com-
pact representations with reduced dimensionality,
which can integrate a range of non-verbal informa-
tion such as visual and sound features (Feng and
Lapata, 2010; Kiela and Clark, 2015).

Word vectors have been linked to conceptual

1There are various possible ways to construct distribu-
tions, including predictive language models based on neural
networks (Mikolov et al., 2013).
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representations both theoretically (Erk, 2013) and
experimentally, for instance in psycholinguistic
and neurolinguistic work (Anderson et al., 2013;
Mitchell et al., 2008). The general idea is that a
distribution encapsulates information about what
kind of thing a particular concept might be. Re-
trieving such information in ways that can be ver-
balised is often done by looking at the ‘nearest
neighbours’ of a vector. Indeed, a natural con-
sequence of the DS architecture is that similar
words cluster in the same area of the semantic
space: it has been shown that the distance between
DS vectors correlates well with human similarity
judgements (Baroni et al., 2014b; Kiela and Clark,
2014). So we can find out what a cat is by inspect-
ing the subspace in which the vector cat lives, and
finding items such as animal, dog, pet, scratch etc.

In what follows, we use this feature of vector
spaces to give an interpretable model of an indi-
vidual, i.e., we can predict that a person might be
a linguist by knowing that their vector is the close
neighbour of, say, semantics, reference, model.

4 A DS model of a community

4.1 People in semantic spaces

Summing up what we have said so far, we follow
the claim that we can theoretically talk about the
linguistic experience of a speaker in distributional
terms. The words that a person has read, written,
spoken or heard, are a very individual signature
for that person. The sum of those words carries
important information about the type of concepts
someone may be familiar with, about their social
environment (indicated by the registers observed
in their linguistic experience) and, broadly speak-
ing, their interests.

We further posit that people’s individuality can
be modelled as vectors in a semantic space, in a
way that the concepts surrounding a person’s vec-
tor reflect their experience. For instance, a cook
might ‘live’ in a subspace inhabited by other cooks
and concepts related to cooking. In that sense, the
person can be seen as any other concept inhabiting
that space.

In order to compute such person vectors, we
expand on a well-known result of compositional
distributional semantics (CDS). CDS studies how
words combine to form phrases and sentences.
While various, more or less complex frameworks
have been proposed (Clark et al., 2008; Mitchell
and Lapata, 2010; Baroni et al., 2014a), it has re-

peatedly been found that simple addition of vec-
tors performs well in modelling the meaning of
larger constituents (i.e., we express the meaning
of black cat by simply summing the vectors for
black and cat). To some extent, it is also possible
to get the ‘gist’ of simple sentences by summing
their constituent words. The fundamental idea be-
hind simple addition is that, given a coherent set
of words (i.e. words which ‘belong together and
are close in the semantic space), their sum will ex-
press the general topic of those words by creating
a centroid vector sitting in their midst. This notion
of coherence is important: summing two vectors
that are far away from each other in the space will
result in a vector which is far from both the base
terms (this is one of the intuitions used in (Vec-
chi et al., 2011) to capture semantically anomalous
phrases).

We take this idea further by assuming that peo-
ple are on the whole coherent (see (Herbelot,
2015) for a similar argument about proper names):
their experiences reflect who they are. For in-
stance, by virtue of being a chef, or someone inter-
ested in cooking, someone will have many inter-
connected experiences related to food. In particu-
lar, a good part of their linguistic experiences will
involve talking, reading and writing about food.
It follows that we can represent a person by sum-
ming the vectors corresponding to the words they
have been exposed to. When aggregating the vo-
cabulary most salient for a chef, we would hope-
fully create a vector inhabiting the ‘food’ section
of the space. As we will see in §6, the model we
propose is slightly more complex, but the intuition
remains the same.

Note that, in spite of being ‘coherent’, peo-
ple are not one-sided, and a cook can also be a
bungee-jumper in their spare time. So depending
on the spread of data we have about a person, our
method is not completely immune to creating vec-
tors which sit a little too far away from the topics
they encapsulate. This is a limit of our approach
which could be solved by attributing a set of vec-
tors, rather than a single representation, to each
person. In this work, however, we do not consider
this option and assume that the model is still dis-
criminative enough to distinguish people.

4.2 From person vectors to interacting agents

In what sense are person vectors useful represen-
tations? We have said that, as any distribution in
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a semantic space, they give information about the
type of thing/person modelled by the vector. We
also mentioned in §2 that knowing who someone
is (just like knowing what something is) influences
our interaction with them. So we would like to
model in which ways our people representations
help us successfully communicate with them.

For the purpose of this paper, we choose an in-
formation retrieval task as our testbed, described
in §5. The task, which involves identifying a rel-
evant knowledge holder for a particular question,
requires us to embed our person vectors into sim-
ple agent-like entities, with a number of linguis-
tic, knowledge-processing and communicative ca-
pabilities. A general illustration of the structure
of each agent is shown in Fig. 1. An agent stores
(and dynamically updates) a) a person vector; b)
a memory which, for the purpose of our evalua-
tion (§5), is a store of linguistic experiences (some
data the person has read or written, e.g. informa-
tion on Venezuelan cocoa beans). The memory
acts as a knowledge base which can be queried, i.e.
relevant parts can be ‘remembered’ (e.g. the per-
son remember reading about some Valrhona co-
coa, with a spicy flavour). Further, the agent has
some awareness of others: it holds a model of
its community consisting of other people’s vectors
(e.g., the agent knows Bob, who is a chef, and Al-
ice, who is a linguist). When acted by a particular
communication need, the agent can direct its at-
tention to the appropriate people in its community
and engage with them.

5 Evaluating person vectors

5.1 The task

To evaluate our person vectors, we choose a task
which relies on having a correct representation of
the expertise of an individual.

Let’s imagine a person with a particular infor-
mation need, for instance, getting sightseeing tips
for a holiday destination. Let’s also say that we
are in a pre-Internet era, where information is typ-
ically sought from other actors in one’s real-world
community. The communication process associ-
ated with satisfying this information need takes
two steps: a) identifying the actors most likely to
hold relevant knowledge (perhaps a friend who has
done the trip before, or a local travel agent); b)
asking them to share relevant knowledge.

In the following, we replicate this situation us-
ing a set of agents, created as described in §4.

Figure 1: A person is exposed to a set of linguistic expe-
riences. Computationally, each experience is represented as
a vector in a memory store. The sum of those experiences
make up the individual’s ‘person vector’. The person also
has a model of their community in the form of other individ-
uals’ person vectors. In response to a particular communica-
tion need, the person can direct their attention to the relevant
actors in that community.

We assume that those agents are fully connected
and aware of each other, in a way that they can
direct specific questions to the individuals most
likely to answer them. Our evaluation procedure
tests whether, for a given information need, ex-
pressed in natural language by one agent (e.g.
What is Venezuelan chocolate like?), the commu-
nity is modelled in a way that an answer can be
successfully obtained (i.e. an agent with relevant
expertise has been found, and ‘remembers’ some
information that satisfies the querier’s need). Note
that we are not simulating any real communication
between agents, which would require that the in-
formation holder generates a natural language an-
swer to the question. Rather, the contacted agent
simply returns the information in its memory store
which seems most relevant to the query at hand.
We believe this is enough to confirm that the per-
son vector was useful in acquiring the information:
if the querying agent contacts the ‘wrong’ person,
the system has failed in successfully fulfulling the
information need.

5.2 Comparative evaluation
We note that the task we propose can be seen as
an information retrieval (IR) problem over a dis-
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tributed network: a query is matched to some rele-
vant knowledge unit, with all available knowledge
being split across a number of ‘peers’ (the indi-
viduals in our community). So in order to know
how well the system does at retrieving relevant in-
formation, we can use as benchmark standard IR
software.

We compare the performance of our system
with a classic, centralised IR algorithm, as im-
plemented in the Apache Lucene search engine.
Lucene is an open source library for implementing
(unstructured) document retrieval systems, which
has been employed in many full-text search en-
gine systems (for an overview of the library, see
(Bialecki et al., 2012)). We use the out-of-the-box
‘standard’ indexing solution provided by Lucene,2

which roughly implements a term-by-document
Vector Space Model, in which terms are lemma-
tised and associated to documents using their tf-idf
scores (Spärck-Jones, 1972) computed from the
input Wikipedia corpus of our evaluation. Simi-
larly, queries are parsed using Lucene’s standard
query parser and then searched and ranked by the
computed ‘default’ similarities.3

Our hypothesis is that, if our system can match
the performance of a well-known IR system, we
can also conclude that the person vectors were a
good summary of the information held by a par-
ticular agent.

5.3 Data challenges

Finding data to set up the evaluation of our sys-
tem is an extremely challenging task. It involves
finding a) personalised linguistic data which can
be split into coherent ‘linguistic experiences’; b)
realistic natural language queries; c) a gold stan-
dard matching queries and relevant experiences.
There is very little openly available data on peo-
ple’s personal linguistic experience. What is avail-
able comes mostly from the Web science and user
personalisation communities and such data is ei-
ther not annotated for IR evaluation purposes (e.g.
(von der Weth and Hauswirth, 2013)), or propri-
etary and not easily accessible or re-distributable
(e.g. (Collins-Thompson et al., 2011)). Con-
versely, standard IR datasets do not give any in-

2Ver. 5.4.1, obtained from http://apache.
lauf-forum.at/lucene/java/5.4.1.

3For an explanation of query matching and simi-
larity computation see http://lucene.apache.
org/core/5_4_1/core/org/apache/lucene/
search/similarities/Similarity.html.

formation about users’ personal experiences. We
attempt to solve this conundrum by using infor-
mation freely available on Wikipedia. We com-
bine a Wikipedia-based Question Answering (QA)
dataset with contributor logs from the online ency-
clopedia.

We use the freely available ‘WikiQA’ dataset of
(Yang et al., 2015).4 This dataset contains 3047
questions sampled from the Bing search engine’s
data. Each question is associated with a Wikipedia
page which received user clicks at query time. The
dataset is further annotated with the particular sen-
tence in the Wikipedia article which answers the
query – if it exists. Many pages that were cho-
sen by the Bing users do not actually hold the an-
swer to their questions, reducing the data to 1242
queries and the 1194 corresponding pages which
can be considered relevant for those queries (41%
of all questions). We use this subset for our ex-
periments, regarding each document in the dataset
as a ‘linguistic experience’, which can be stored in
the memory of the agent exposed to it.

To model individuals, we download a log of
Wikipedia contributions (March 2015). This log is
described as a ‘log events to all pages and users’.
We found that it does not, in fact, contain all pos-
sible edits (presumably because of storage issues).
Of the 1194 pages in our WikiQA subset, only
625 are logged. We record the usernames of all
contributors to those 625 documents, weeding out
contributors whose usernames contain the string
bot and have more than 10,000 edits (under the as-
sumption that those are, indeed, bots). Finally, for
each user, we download and clean all articles they
have contributed to.

In summary, we have a dataset which consists of
a) 662 WikiQA queries linked to 625 documents
relevant for those queries; b) a community of 4379
individuals/agents, with just over 1M documents
spread across the memories of all agents.

6 Implementation

Our community is modelled as a distributed net-
work of 4379 agents {a1, . . . , a4379}. Each agent
ak has two components: a) a personal profile com-
ponent, which fills the agent’s memory with in-
formation from the person’s linguistic experience
(i.e., documents she/he reads or edits) and cal-
culates the corresponding person vector; b) an
‘attention’ component which gets activated when

4http://aka.ms/WikiQA
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a communication need is felt. All agents share
a common semantic space S which gives back-
ground vectorial representations for words in the
system’s vocabulary. In our current implemen-
tation, S is given by the CBOW semantic space
of (Baroni et al., 2014b), a 400-dimension vec-
tor space of 300,000 items built using the neu-
ral network language model of (Mikolov et al.,
2013). This space shows high correlation with hu-
man similarity judgements (i.e., ρ = 0.80) over
the 3000 pairs of the MEN dataset (Bruni et al.,
2012). Note that using a standard space means the
we assume shared meaning presentations across
the community (i.e., at this stage, we don’t model
inter-speaker differences at the lexical item level).

Person vectors: A person vector is the nor-
malised sum of that person’s linguistic experi-
ences:

~p =
∑

1..k..n

~ek. (1)

As mentioned previously, in our current setup,
linguistic experiences correspond to documents.

Document/experience vectors: we posit that
the (rough) meaning of a document can be ex-
pressed as an additive function acting over (some
of) the words of that document. Specifically, we
sum the 10 words that are most characteristic for
the document. While this may seem to miss out on
much of the document’s content, it is important to
remember that the background DS representations
used in the summation are already rich in content:
the vector for Italy, for instance, will typically sit
next to Rome, country and pasta in the semantic
space. The summation roughly captures the doc-
ument’s content in a way equivalent to a human
describing a text as being about so and so.

We need to individually build document vectors
for potentially sparse individual profiles, without
necessitating access to the overall document col-
lection of the system (because ak is not necessar-
ily aware of am’s experiences). Thus, standard
measures such as tf-idf are not suitable to calcu-
late the importance of a word for a document. We
alleviate this issue by using a static list of word en-
tropies (calculated over the ukWaC 2 billion words
corpus, (Baroni et al., 2009)) and the following
weighting measure:

wt =
freq(t)

log(H(t) + 1)
, (2)

where freq(t) is the frequency of term t in the doc-
ument and H(t) is its entropy, as calculated over
a larger corpus. The representation of the docu-
ment is then the weighted sum of the 10 terms5

with highest importance for that text:

~e =
∑

t∈t1...t10

wt ∗ ~t. (3)

Note that both vectors ~t and ~e are normalised to
unit length.

For efficiency reasons, we compute weights
only over the first 20 lines of documents, also fol-
lowing the observation that the beginning of a doc-
ument is often more informative as to its topic than
the rest (Manning et al., 2008).

Attention: The ‘attention’ module directs the
agent to the person most relevant for its current in-
formation need. In this paper, it is operationalised
as cosine similarity between vectors. The module
takes a query q and translates it into a vector ~q by
summing the words in the query, as in Eq. 3. It
then goes through a 2-stage process: 1) find po-
tentially helpful people by calculating the cosine
distance between ~q and all person vectors ~p1... ~pn;
2) query themmost relevant people, who will cal-
culate the distance between ~q and all documents in
their memory, Dk = {d1...dt}. Receive the docu-
ments corresponding to the highest scores, ranked
in descending order.

7 Describing the community

7.1 Qualitative checks
As a sanity check, it is possible to inspect where
each experience/document vector sits in the se-
mantic space, by looking at its ‘nearest neigh-
bours’ (i.e., them words closest to it in the space).
We show below two documents with their nearest
neighbours, as output by our system:
Artificial_intelligence:
ai artificial intelligence intelligent
computational research researchers
computing cognitive computer

Anatoly_Karpov:
chess ussr moscow tournament ukraine
russia soviet russian champion opponent

We also consider whether each user inhabits a
seemingly coherent area of the semantic space.
The following shows a user profile, as output by
our system, which corresponds to a person with
an interest in American history:

5We experimented with a range of values, not reported
here for space reasons.
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# agents # docs
2939 1-100
944 100-500
226 500-1000
145 1000-2000
82 2000-5000
15 10000-200000

Table 1: Distribution of documents across peo-
ple. For example, 2939 agents contain 1–100 doc-
uments.

name = [...]
topics = confederate indians american
americans mexican mexico states army
soldiers navy
coherence = 0.452686176513
p_vector:0.004526 0.021659 [...] 0.029680

The profile includes a username and the 10 near-
est neighbours to the user’s pk vector (which give a
human-readable representation of the broad exper-
tise of the user), the corresponding coherence fig-
ure (see next section for information about coher-
ence) and the actual person vector for that agent.

7.2 Quantitative description
Distribution of documents across agents: An
investigation of the resulting community indicates
that the distribution of documents across people is
highly skewed: 12% of all agents only contain one
document, 31% contain less than 10 documents.
Table 1 shows the overall distribution.

Topic coherence: We compute the ‘topic coher-
ence’ of each person vector, that is, the extent to
which it focuses on related topics. We expect that
it will be easier to identify a document answer-
ing a query on e.g. baking if it is held by an
agent which contains a large proportion of other
cooking-related information. Following the intu-
ition of (Newman et al., 2010), we define the co-
herence of a set of documents d1, · · · , dn as the
mean of their pairwise similarities:

Coherence(d1...n) = mean{Sim(di, dj),
ij ∈ 1 . . . n, i < j}

(4)
where Sim is the cosine similarity between two
documents.

The mean coherence over the 4379 person vec-
tors is 0.40 with a variance of 0.06. The high vari-
ance is due to the number of agents containing one
document only (which have coherence 1.0). When
only considering the agents with at least two doc-
uments, the mean coherence is 0.32, with variance

# relevant docs # agents containing doc
176 1
169 2-4
100 5-9
64 10-19
45 20-49
49 50-99
19 100-199
3 200-399

Table 2: Redundancy of relevant documents
across people. For example, 176 documents are
found in one agent; 169 documents are found in
2–4 agents, etc.

0.01. So despite a high disparity in memory sizes,
the coherence is roughly stable. For reference, a
cosine similarity of 0.32 in our semantic space cor-
responds to a fair level of relatedness: for instance,
some words related to school at the 0.30 level are
studied, lessons, attend, district, church.

Information redundancy: we investigate the
redundancy of the created network with respect to
our documents of interest: given a document D
which answers one or more query in the dataset,
we ask how many memory stores contain D. This
information is given in Table 2. We observe that
176 documents are contained in only one agent out
of 4379. Overall, around 70% of the documents
that answer a query in the dataset are to be found in
less than 10 agents. So as far as our pages of inter-
est are concerned, the knowledge base of our com-
munity is minimally redundant, making the task
all the more challenging.

8 Evaluation

The WikiQA dataset gives us information about
the document dgold that was clicked on by users
after issuing a particular query q. This indicates
that dgold was relevant for q, but does not give us
information about which other documents might
have also be deemed relevant by the user. In this
respect, the dataset differs from fully annotated IR
collections like the TREC data (Harman, 1993).
In what follows, we report Mean Reciprocal Rank
(MRR), which takes into account that only one
document per query is considered relevant in our
dataset:

MRR =
∑
q∈Q

P (q), (5)

where Q is the set of all queries, and P (q) is the
precision of the system for query q. P (q) itself is
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Figure 2: MRR for Lucene and our system (best 5
person vectors).

given by:

P (q) =

{
1
rq

if rq < cutoff

0 otherwise
,

where rq is the rank at which the correct docu-
ment is returned for query q, and the cutoff is a
predefined number of considered results (e.g., top
20 documents).

The MRR scores for Lucene and our system are
shown in Fig. 2. The x-axis shows different cut-
off points (e.g., cut-off point 10 means that we are
only considering the top 10 documents returned
by the system). The graph gives results for the
case where the agent contacts the p = 5 people
potentially most relevant for the query. We also
tried m = {10, 20, 50} and found that end results
are fairly stable, despite the fact that the chance
of retrieving at least one ‘useful’ agent increases.
This is due to the fact that, as people are added
to the first phase of querying, confusion increases
(more documents are inspected) and the system is
more likely to return the correct page at a slightly
lower rank (e.g., as witnessed by the performance
of Lucene’s centralised indexing mechanism).

Our hypothesis was that matching the perfor-
mance of an IR algorithm would validate our
model as a useful representation of a community.
We find, in fact, that our method considerably
outperforms Lucene, reaching MRR = 0.31 for
m = 5 against MRR = 0.22. This is a very inter-
esting result, as it suggests that retaining the natu-
ral relationship between information and knowl-
edge holders increases the ability of the system
to retrieve it, and this, despite the intrinsic diffi-
culty of searching in a distributed setting. This is
especially promising, as the implementation pre-
sented here is given in its purest form, without
heavy pre-processing or parameter setting. Aside
from a short list of common stopwords, the agent

only uses simple linear algebra operations over
raw, non-lemmatised data.

MRR figures are not necessarily very intuitive,
so we inspect how many times an agent is found
who can answer the query (i.e. its memory store
contains the document that was marked as holding
the answer to the query in WikiQA). We find that
the system finds a helpful hand 39% of the time for
m = 5 and 52% atm = 50. These relatively mod-
est figures demonstrate the difficulty of our task
and dataset. We must however also acknowledge
that finding appropriate helpers amongst a com-
munity of 4000 individuals is highly non-trivial.

Overall, the system is very precise once a good
agent has been identified (i.e., it is likely to re-
turn the correct document in the first few results).
This is shown by the fact that the MRR only in-
creases slightly between cut-off point 1 and 20,
from 0.29 to 0.31 (compare with Lucene, which
achieves MRR = 0.02 at rank 1). This behaviour
can be explained by the fact that the agent over-
whelmingly prefers ‘small’ memory sizes: 78% of
the agents selected in the first phase of the query-
ing process contain less than 100 documents. This
is an important aspect which should guide further
modelling. We hypothesise that people with larger
memory stores are perhaps less attractive to the
querying agent because their profiles are less top-
ically defined (i.e., as the number of documents
browsed by a user increases, it is more likely that
they cover a wider range of topics). As pointed out
in §4, we suggest that our person representations
may need more structure, perhaps in the form of
several coherent ‘topic vectors’. It makes intuitive
sense to assume that a) the interests of a person
are not necessarily close to each other (e.g. some-
one may be a linguist and a hobby gardener); b)
when a person with an information need selects
‘who can help’ amongst their acquaintances, they
only consider the relevant aspects of an individ-
ual (e.g., the hobby gardener is a good match for
a query on gardening, irrespectively of their other
persona as a linguist).

Finally, we note that all figures reported here are
below their true value (including those pertaining
to Lucene). This is because we attempt to retrieve
the page labelled as containing the answer to the
query in the WikiQA dataset. Pages which are rel-
evant but not contained in WikiQA are incorrectly
given a score of 0. For instance, the query what
classes are considered humanities returns Outline

186



of the humanities as the first answer, but the cho-
sen document in WikiQA is Humanities.

9 Conclusion

We have investigated the notion of ‘person vec-
tor’, built from a set of linguistic experiences as-
sociated with a real individual. These ‘person vec-
tors’ live in the same semantic space as concepts
and, as any semantic vector, give information
about the kind of entity they describe, i.e. what
kind of person someone is. We modelled a com-
munity of speakers from 1M ‘experiences’ (doc-
uments read or edited by Wikipedians), shared
across over 4000 individuals. We tested the repre-
sentations obtained for each individual by engag-
ing them into an information-seeking task neces-
sitating some understanding of the community for
successful communication. We showed that our
system outperforms a standard IR algorithm, as
implemented by the Lucene engine. We hope to
improve our modelling by constructing structured
sets of person vectors that explicitly distinguish
the various areas of expertise of an individual.

One limit of our approach is that we assumed
person vectors to be unique across the community,
i.e. that there is some kind of ground truth about
the representation of a person. This is of course
unrealistic, and the picture that Bob has of Alice
should be different from the picture that Kim has
of her, and again different from the picture that
Alice has of herself. Modelling these fine distinc-
tions, and finding an evaluation strategy for such
modelling, is reserved for future work.

A more in-depth analysis of our model would
also need to consider more sophisticated compo-
sition methods. We chose addition in this pa-
per for its ease of implementation and efficiency,
but other techniques are known to perform better
for representing sentences and documents (Le and
Mikolov, 2014)).

We believe that person vectors, aside from be-
ing interesting theoretical objects, are also useful
constructs for a range of application, especially in
the social media area. As a demonstration of this,
we have made our system available at https:
//github.com/PeARSearch in the form of a
distributed information retrieval engine. The code
for the specific experiments presented in this paper
is at https://github.com/PeARSearch/
PeARS-evaluation.
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Aurélie Herbelot. 2015. Mr Darcy and Mr Toad, gen-
tlemen: distributional names and their kinds. In
Proceedings of the 11th International Conference on
Computational Semantics, pages 151–161.

Douwe Kiela and Stephen Clark. 2014. A system-
atic study of semantic vector space model parame-
ters. In Proceedings of the 2nd Workshop on Con-
tinuous Vector Space Models and their Composition-
ality (CVSC) at EACL, pages 21–30.

Douwe Kiela and Stephen Clark. 2015. Multi-and
cross-modal semantics beyond vision: Grounding in
auditory perception. In EMNLP.

Tom Kwiatkowski, Sharon Goldwater, Luke Zettle-
moyer, and Mark Steedman. 2012. A probabilis-
tic model of syntactic and semantic acquisition from
child-directed utterances and their meanings. In
EACL, pages 234–244, Avignon, France.

Thomas K Landauer and Susan T Dumais. 1997. A so-
lution to Plato’s problem: The latent semantic anal-
ysis theory of acquisition, induction, and represen-
tation of knowledge. Psychological review, pages
211–240.

Quoc V Le and Tomas Mikolov. 2014. Distributed
representations of sentences and documents. arXiv
preprint arXiv:1405.4053.

Kevin Lund and Curt Burgess. 1996. Producing
high-dimensional semantic spaces from lexical co-
occurrence. Behavior Research Methods, Instru-
ments, & Computers, 28:203–208, June.

Christopher D Manning, Prabhakar Raghavan, and
Hinrich Schütze. 2008. Introduction to information
retrieval, volume 1. Cambridge University Press,
Cambridge, UK.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Jeff Mitchell and Mirella Lapata. 2010. Composition
in Distributional Models of Semantics. Cognitive
Science, 34(8):1388–1429, November.

Tom M. Mitchell, Svetlana V. Shinkareva, Andrew
Carlson, Kai-Min Chang, Vicente L. Malave,
Robert A. Mason, and Marcel Adam Just. 2008.
Predicting human brain activity associated with the
meanings of nouns. Science, 320(5880):1191–1195.

David Newman, Jey Han Lau, Karl Grieser, and Tim-
othy Baldwin. 2010. Automatic evaluation of topic
coherence. In NAACL, pages 100–108.

Karen Spärck-Jones. 1972. A statistical interpretation
of term specificity and its application in retrieval.
Journal of documentation, 28(1):11–21.

Efstathios Stamatatos. 2009. A survey of modern au-
thorship attribution methods. Journal of the Ameri-
can Society for information Science and Technology,
60(3):538–556.

Peter D. Turney and Patrick Pantel. 2010. From
frequency to meaning: Vector space models of se-
mantics. Journal of Artificial Intelligence Research,
37:141–188.

Eva Maria Vecchi, Marco Baroni, and Roberto Zam-
parelli. 2011. (Linear) maps of the impossible: cap-
turing semantic anomalies in distributional space. In
Proceedings of the Workshop on Distributional Se-
mantics and Compositionality, pages 1–9. Associa-
tion for Computational Linguistics.

Christian von der Weth and Manfred Hauswirth. 2013.
Dobbs: Towards a comprehensive dataset to study
the browsing behavior of online users. In Web In-
telligence (WI) and Intelligent Agent Technologies
(IAT), 2013, volume 1, pages 51–56. IEEE.

Anna Wierzbicka. 1984. Cups and mugs: Lexicogra-
phy and conceptual analysis. Australian Journal of
Linguistics, 4(2):205–255.

Ludwig Wittgenstein. 1953. Philosophical investiga-
tions. Wiley-Blackwell (reprint 2010).

Yi Yang, Wen-tau Yih, and Christopher Meek. 2015.
WIKIQA: A Challenge Dataset for Open-Domain
Question Answering. In EMNLP.

Rong Zheng, Jiexun Li, Hsinchun Chen, and Zan
Huang. 2006. A framework for authorship identi-
fication of online messages: Writing-style features
and classification techniques. Journal of the Ameri-
can Society for Information Science and Technology,
57(3):378–393.

188


